
Advanced Content
Most of our dealings with content so far, have been fairly basic in that they require us
only to learn which settings to enable, and what text to enter. There is a fundamental
difference between that and what is coming in this chapter, mainly because the
content in this chapter requires us to think ahead, and plan what we want ahead of
time, in order to prevent things going awry at a later date.

One of the most important aspects to managing content is the manner in which it is
best organized for expedient retrieval—and for this, we need to to discuss taxonomy.
Taxonomy is what makes Drupal's classification system so powerful, and it is left for
us to decide how best to implement. It might sound a little strange at first, but we
will see later on in the chapter why this faculty of Drupal is one of the features that
distinguishes it from everything else out there—it's really a good thing!

Being able to categorize information is one thing, but the ability to create entirely
new content types and post complex pages will also come in handy at some stage.
Accordingly, this chapter discusses the following subjects:

Taxonomy
Content Construction Kit (CCK)
HTML, PHP, and Content Posting

The skills learned during the process of content classification, creation, and
management will prove useful not only for this website but also in other aspects of
life—whether it is creating and managing office reports for your boss, building a new
website, or even writing a book. That is because, by and large, we are now going to
learn how content should be managed and created rather than how to click buttons and
links to enable or disable settings.

•

•

•

Advanced Content

[�]

Taxonomy
At first glance, it might seem that taxonomy is yet another term indicating that your
job is going to be more complex for some reason or other. After all, it's perfectly
reasonable to set up a website to allow blog writers to blog, forum posters to post,
administrators to administer, or any other type of content producer to produce
content and leave it at that. With what we have covered so far, this is all quite
possible, so why does Drupal insist on adding the burden of learning about new
concepts and terms?

If your site is never going to gather a substantial amount of content (perhaps it is
only meant as a more static, placeholder type of site), then spending time working
with taxonomies and so on is probably not going to bring much advantage—go
ahead and enable whatever content types you require and let users add whatever
they want.

However, the aim is not generally to remain in obscurity when creating a website,
so assuming that you do want to attract a community of users, then the method
of categorizing content in Drupal makes it one of the most sophisticated content
management systems around!

Take the time to master working with taxonomy in Drupal, because not only will
this help you to work out how to manage content better, but it will also really set
your site apart from others because of the flexible and intuitive manner in which the
content is organized. These attributes allow you to manage a site of pretty much any
size imaginable (just in case what you are working on is "the next big thing").

What and Why?
Taxonomy is described as the science of classification. In terms of how it applies to
Drupal, it is the method by which content is organized using several distinct types of
relationship between terms. Simple as that! This doesn't really encompass how useful
it is, though, but before we move on to that, there is a bit of terminology that to pick
up first:

Term: A term used to describe content (also known as a descriptor)
Vocabulary: A grouping of related terms
Thesaurus: A categorization of content, which describes is similar to
relationships
Taxonomy: A categorization of content into a hierarchical structure
Tagging: The process of associating a term (descriptor) with content
Synonym: Can be thought of as another word for the current term. It may help
to view the following diagram in order to properly grasp how these terms
inter-relate:

•
•
•

•
•
•

Chapter 7

[�]

This serves to illustrate the fact that there are two main types of vocabulary. Each
type consists of a set of terms, but the relationship between them are different
in that a taxonomy deals with a hierarchy of information, and a thesaurus deals
with relationships between terms. The terms (shown as small boxes) and their
relationships (shown as arrows) play a critical role in which type of vocabulary
you use.

We have already seen an example of a taxonomy when the Forum module was
discussed. In this case, there was a hierarchical relationship between forum
containers and the forum topics they contained. But what would we need thesauri
for? For one thing, if you were working on creating a scientific document and
wanted to allow plenty of references between terms so that users could browse
related pages, which didn't necessarily have child-parent relationships, then you
would go for this type of structure.

What we have discussed so far is how to control a taxonomy from the administrator's
point of view. It is also possible to pass that control on to everyone who uses the site
to by creating a free taxonomy. One of the things that makes the Drupal taxonomy
system so powerful, is that it allows content to be categorized on the fly (as and
when it is created). This unburdens administrators because it is no longer necessary
to moderate every bit of content coming into the site in order to put it into pre-
determined categories.

We'll discuss both methods in some detail in the coming sections, but it's also worth
noting quickly that it is also possible to tag a given node more than once. This
means that content can belong to several vocabularies, at once. This is very useful
for cross-referencing purposes because it highlights relationships between terms or
vocabularies through the actual nodes.

Let's begin…

Advanced Content

[�]

Implementing Controlled Taxonomies in
Drupal
The best way to talk about how to implement some form of categorization is to see
it in action. There are quite a few settings to work with and consider in order to get
things up and running. Let's assume that the demo site has enlisted a large number
of specialists who will maintain their own blogs on the website so that interested
parties can keep tabs on what's news according to the people in the know.

Now, some people will be happy with visiting their blog of choice and reading over
any new postings there. Some people, however, might want to be able to search
for specific topics in order to see if there are correlations or disagreements between
bloggers on certain subjects. As there is going to be a lot of content posted once the site
has been up and running for a few months, we need some way to ensure that specific
topics are easy to find regardless of who has been discussing them on their blogs.

Introduction to Vocabularies
Let's quickly discuss how vocabularies are dealt with in the administration tool in
order to work out how to go about making sure this requirement is satisfied. If you
click on the Taxonomy link under Content management, you will be presented with
a page listing the current vocabularies. Assuming you have created a forum during
the last few chapters, you should have something like this:

Chapter 7

[�]

Before we look at editing terms and vocabularies, let's take a look at how to create a
vocabulary for ourselves. Click on the add vocabulary tab to bring up the following
page that we can use to create a vocabulary, manually

By way of example, this vocabulary will deal with the topic of hunting, and there are
a couple of notes to guide users when they intend to submit a blog entry. This only
applies to blog entries because that is the only content (or node) type for which this
vocabulary is enabled—you can select as many or as few as you like, depending on
how many content types this vocabulary should apply to.

Advanced Content

[�]

Looking further down the page, there are several other options that we will discuss
in more detail, shortly. Clicking on Submit adds this vocabulary to the list, so that
the main page now looks like this:

So far so good, but this will not be of much use to us as it stands! We need to add
some terms (descriptors) in order to allow tagging to commence.

Dealing with Terms
Click on add terms link for the Hunting vocabulary to bring up the following page:

Chapter 7

[�]

The term Trapping has been added here, with a brief description of the term itself
that guides contributors. We could, if we choose, associate the term Poaching with
Trapping by making it a related term or synonym. Click on the Advanced options
link to expose the additional features as shown here:

Advanced Content

[�]

In this case, the term Trapping is specified as being related to Poaching and by way
of example, gin traps is a synonym. Synonyms don't actually do anything useful at
the moment, so don't pay too much mind to them yet, but there are modules that
expose additional functionality based on related terms and synonyms such as the
Similar By Terms module.

The Parents option at the start of the Advanced options warrants a closer inspection,
but as it relates more closely to the structure of hierarchies, we'll look at it in the
section on Hierarchies that's coming up.

For now, add a few more terms to this vocabulary so that the list looks something
like this:

It's now time to make use of these terms by posting some blog content.

Posting Content with Categories Enabled
Using any account with the requisite permissions to add blog content, attempt to
post to the site. You should now be able to view the newly inserted Categories
section as shown here:

Chapter 7

[�]

Now comes the clever bit! Once this blog node has been posted, users can view
the blog as normal, except that it now has its term displayed along with the post
(bottom right):

Where does the descriptor link take us? Click on the term, in this case Canned
hunting, and you will be taken to a page listing all of the content that has been
tagged with this term. This should really have you quite excited, because with very
little work, users can now find focused content without having to look that hard—
this is what content management is all about!

Hierarchies
What we have seen this far is really only the tip of the iceberg. You can build an
entire hierarchy of terms in a vocabulary to give you a fairly complex taxonomy.
Remember that if it is a hierarchy you are building, then the broadest terms should
be towards the top of the pile, with the more focused terms near the bottom. At the
moment, though, we don't really have a hierarchy, but rather, more of a flat structure.

What if we wanted a set of more specific terms that would allow bloggers to tag their
content (which focuses on specific types of Trapping, for example)? The answer lies
in restructuring the vocabulary by dragging and dropping its terms not only up and
down the list but right to left—this is done when viewing the list terms page of
the vocabulary.

Advanced Content

[10]

For this example, I added a term entitled Snaring to the vocabulary, and then
dragged it under and to the right of the term Trapping to indicate that it is lower in
the hierarchy:

Saving this change leaves us with the same page, only the description of the
hierarchy has moved from flat to single:

Chapter 7

[11]

That was fairly easy to do, and now we are free to create either flat hierarchies or
single depth ones (i.e. one parent term with one child term—no grandchildren).
If you wanted to create a deep hierarchy structure, then this is easily achieved
by dragging either additional terms under Snaring, or moving Trapping under
something else, like this:

This should not be confused with creating multiple hierarchies—notice that
the hierarchy description in this screenshot still describes Hunting as a single
hierarchy vocabulary.

But what happens if your topic is slightly more complex than a straightforward
hierarchy? For example, it's quite possible that the terms Pits (referring to hunting
pits) could be equally at home under both Trapping and Poaching (which in turn
may also have multiple parents). In the event that one term has several parent terms,
the phrase used to describe this structure is multiple hierarchy.

Recall that when dealing with terms previously, there was an Advanced option in
the term edit page that allowed us to specify one or more parent terms. Selecting
more than one parent, like so:

Advanced Content

[1�]

Leads Drupal to warn us with the following page:

Basically, it is necessary to warn users that the normal drag and drop facility for
vocabularies are not implementable when terms have a complex hierarchy involving
several parents—that said, drag and drop will still be enabled if it is at all possible
and the structure will still be shown on the List page. If you want a multiple
hierarchy, then the structural editing of the hierarchy must be done by hand in each
term's edit form.

Go ahead and click Set multiple parents—you might want to add a few terms and
set each of these to have multiple parents to make the structure a little more complex.
With that done, note that the drag and drop features of the list page are disabled:

Chapter 7

[1�]

The hierarchy structure is useful when the topics of discussion fall fairly neatly into
some sort of natural hierarchy—forums are the best example of this. However, it
may well be that a given piece of content overlaps several terms and should really be
tagged with more than one term. To achieve this, head back to the vocabulary editing
page and select the Multiple select option in the Settings section:

Save this and then post some new content. Now, instead of being presented with a
single term to associate with the post, it is possible to select as many as are relevant:

Advanced Content

[1�]

When this post is viewed on the site, it has several tags associated with it, and users
can click on any of these tags to immediately locate more content that is of specific
interest to them:

Notice that the terms presented do not, in anyway, indicate their underlying structure
to the reader—it simply tells them that these are all terms of this bit of content.

Content Structure
What if, in the demo site's case, we have the term Trapping available to tag content
with (blog posts in this case), but someone is really talking about something other
than hunting entirely, and there happens to be some sort of content overlap? An
example scenario might be as follows:

Several specialists are contracted to maintain blogs about the African continent.
They tag their content using a new Africa vocabulary, which contains terms
like nature, gazelle, predators, lakes, rivers, mountains, hunting, weather,
and tourism.
You wish to be able to allow material that is created from the Africa blogs to
be cross-referenced by hunting-related topics in the Hunting specialists' blogs.

In order to achieve this, it is necessary to create a new vocabulary called Africa.
Attach this vocabulary to the blog content type, and then create several terms,
ensuring that one of them is entitled Hunting as follows:

•

•

•

Chapter 7

[1�]

Now, when users attempt to post content, they are presented with not one but
two options to classify their content, and assuming you have correctly ordered the
vocabularies on the Taxonomy page, you can apply a kind of hierarchy to the tags.
For example, a blog post on poaching by one of the Africa bloggers might look
like this:

Once this is posted to the site, it is then possible to view both categories on the
content page instead of just one. In other words, the node has been tagged with
several terms in what is known as faceted tagging.

Faceted tagging uses a bottom up system of classification, where facets or properties
of the content are described by the terms. In this way, a very intuitive method of
classifying content can be created without users needing to understand the top-down
path of a content hierarchy in order to find the content they are after. Ironically, in
this case, the specific method of tagging used here helps to elucidate the hierarchy of
terms too (i.e. Canned hunting is a child of Hunting):

Advanced Content

[1�]

Taking a look at this posting on the site confirms that users can now go directly
to both the Hunting and Canned hunting category pages by clicking on the links
provided in the posting.

What happens if one of the Hunting bloggers simply wants to make an entry and
tag it with the Canned term from the Hunting vocabulary, without having to first
specify that this content also belongs to the Africa vocabulary? The answer lies once
again in editing the vocabulary page, which contains a Required checkbox right at
the bottom. If this option is enabled, then posters must select at least one tag from the
vocabulary, but if we leave it unselected, then posters can choose whether to include
a term from that vocabulary or not.

Talking of new options, there is one more that we should take a look at quickly—
tagging. Since tagging has a number of considerations to consider before
implementation, we treat it in its own section.

Implementing Thesuari in Drupal (Tags)
Tagging is an interesting option because it allows posters to choose their own terms
for their content. While posters effectively have free reign when it comes to tagging
their posts, Drupal understands that a hundred different people might come up with
a hundred different terms to describe the same post, and this can be very detrimental
to the usability of the site.

In order to combat this effect, Drupal provides helpful clues to keep the tagging of
posts as uniform as possible, without placing restrictions on what can and is used for
tagging. Enabling Tags for the Hunting vocabulary, for example, means posters are
given the following category options when creating a blog entry:

Chapter 7

[1�]

Notice that there is a red asterisk superscript above the Hunting category. This is
because despite the fact that we are using free tagging, the Required option on the
edit vocabulary page is still enabled—so something has to be entered here. Secondly,
there is a drop-down list of all the tags available (starting with whatever letter you
type). This means that giving people free reign to type in their own tags is not as
random as it may at first seem, because they can still be guided as to what terms are
already available using this drop-down list. In this way, Drupal can encourage a
more coherent body of terms.

"But Poaching doesn't being with a C", some of you may be remarking. That is
quite correct, but Poaching contains a c so it is displayed here nevertheless—it's a
good way to provide a range of available tags that narrows down quickly as the
user types.

Tagging has some pros in that it is far more flexible. People can tag their content
exactly as they please—making the tagging system fit the content far more snugly.
The problem is, however, that the vocabulary may well become unwieldy, because
similar content could be tagged with entirely different terms, making it hard for
users to find what they are looking for.

Allowing free tagging of content is a very powerful method for categorizing
content. Be wary though, it can lead to a lot of redundant tags, which in turn
lead to content that is hard to find.

You should make note of the fact that it is not possible to create a hierarchy of terms
using the free tagging system, because every new tag is on the same level as all the
other tags. So what you end up with is really a thesaurus, instead of a taxonomy
(hence this section's heading).

Remember that it is still possible to moderate a thesaurus because any and all terms
that posters create will still be added to the list of terms in the vocabulary, and they
can be viewed, edited or deleted as you like.

It is interesting to note that a middle ground between controlled taxonomies and
free tagging is achievable using the already mentioned Multiple select option and
disabling Free tagging. This allows users to tag their posts with as many terms as are
made available by the creator of the vocabulary—giving you control over the terms
used, and posters the freedom to choose which ones they make use of.

With that we come to the end of the discussion on taxonomy. As mentioned when
we first began working on this section, it may take a little while to get the hang of
things, because the way in which the categorization works in Drupal is not always
immediately intuitive. However, once you have mastered it, you will find that your
content is readily accessible and well organized with very little effort.

Advanced Content

[1�]

Content Construction Kit (CCK)
It is likely that at some stage, you will want to upgrade at least some content from
plain text to something that looks a little out of the ordinary. Drupal provides the
CCK module as a way to build custom content types that can be tailored to suit
your needs. In effect, it gives you control over which fields are presented to a user
whenever they post content using custom content types.

The term field refers to a given piece of content within a node. Conversely, a
node is a collection of fields.

In addition to the basic field types provided by the CCK module, you should also
keep an eye out for contribs that extend CCK functionality to provide a huge range of
useful field enhancements. Everything from Brazilian id numbers to validated email
fields, voting widgets and Amazon ASINS have been made available in the past.

There are also a number of other modules that make use of CCK in a variety of
ways. Most important among these is Views. Views provide administrators with the
means to modify how Drupal displays lists of content, and CCK exposes its fields to
the Views module making them perfect partners when it comes to creating custom
content and then displaying that content in a highly configurable manner.

 At the time of writing, Views is not available for Drupal 6 (although the module is
being actively developed and should hopefully be ready by the time you read this)
so it is left as an exercise to download and install it, and create at least one new view
utilizing fields created in the following sections.

Installing CCK
CCK is available, so go ahead and download the latest version and extract the file to
your modules folder. CCK adds its own section to the Modules page under
Site building:

Chapter 7

[1�]

There are a number of interdependent sections for this module, but all of them
rely on the first option, Content, so go ahead and enable this first. We are going to
look over all the features provided by CCK, by default, in this section. So go ahead
and enable those modules that rely only on Content. With that done, enable the
remaining options so that you end up with everything working, like this:

Advanced Content

[�0]

Notice that some of the options are disabled to prevent us from inadvertently
disabling an option that is required by something else. If, for example, you wish to
disable Text, then disable Node Reference and User Reference first.

Working with CCK
With all the options enabled, we can now go ahead and create a new content type.
Actually, it is possible to create new content types without the use of CCK, it's just
that the new content types will look pretty much like the standard content types
already available, because there are no really interesting fields to add.

Head over to Content types under Content management and select the Add content
type field to bring up the following page:

Chapter 7

[�1]

The identification section is pretty straightforward. You can go ahead and fill in
whatever new content settings are appropriate. Of special interest, is the Submission
form settings below this that allows you to decide whether the default Title and
Body fields should be changed or even retained (in the case of the Body field):

In the case of the Endangered Species content type, it doesn't really make sense to
have a species Title, rather a Common name makes more sense in this instance..
Leaving the Body field label blank will cause this field to be omitted completely in
the event that it is not suitable for the type of content you have in mind.

Advanced Content

[��]

Notice too that there are several additional tabs to the right of Add content type tab
that provide additional functionality. These options are discussed a little later on
in this section. So for now, go ahead and fill out the Name, Type, and Description
fields and click Save content type to add this to the default list:

We are now ready to begin customizing this new type utilizing whatever options
are available—depending on what is or is not enabled. It is possible to customize any
type that is available on Drupal, including the default ones like Blog entry or Poll,
but to begin with it is best to leave these alone.

To begin working on the new content type, click on edit in the Endangered Species
row. We can now look at the various aspects of working with content types,
beginning with…

Adding Fields
Select the Add field tab to bring up the following page:

Chapter 7

[��]

This dialog allows you to specify the new field's machine readable name and then
select what type of input it is going to be.

Presently, only the Create new field section it displayed on this page because we
have yet to add new fields. Once there is at least one custom field available, this page
will have an additional section allowing existing fields to be added directly (you can
come back here once there are a few saved fields):

Advanced Content

[��]

Regardless, the Create new field list presently comprises of the following options:

Node Reference – Allows the poster to reference another node using its ID value

Integer, Decimal, Float – Allows posters to store numbers in various formats

Text – Allows posters to enter content

User Reference – Allows posters to reference other users

Remember that this list is subject to change, depending on whether you disable
various components of the default package, for example, Node Reference or User
Reference, or include additional modules that add field types such as Date or
Fivestar.

Each value type comes with a set of options for how that data should be entered.
Looking at the Integer type, we can see that users can be prompted for an integer
with a Text Field, Select list, Check boxes, and radio buttons—in this case, the
Select list is going to be used.

Be careful about how information is stored—it is important to be efficient. For
example, don't store information as text when there is only a certain number of
options available, instead, store them as a number and provide the right input type
to display the various options appropriately.

To demonstrate this point, consider that at the moment, the numbers_in_wild field
is set as an integer with the Select list input type. We are not going to provide a
select list of every possible integer, but we are going to represent a range of numbers
with an integer. For example, the value 1 will correspond to the range 1-10, 2 will
correspond to 11-100, and so on.

With the new field created, the configuration page for this field (under Manage
fields) now displays the current settings for each field. To begin with, the options
in the Widget settings sections are not of much interest as we have not specified
what data this field will hold. To do this, scroll down the page to the Data settings
section. From here, you can decide on how the data will be presented to the user and
whether or not the field itself will be compulsory or not:

Chapter 7

[��]

Along with the Allowed values list used to input key-value pairs, there are a few
other settings that may be of use depending on what data the field should capture.
Minimum and Maximum values along with Suffix and Prefix values allow for
some minor input validation as well as some useful display properties like currency
denominations or physical units of measurement.

Advanced Content

[��]

The Data settings section is type-specific. If, for example, you wanted to save a field
in text format, you will find that the following options are presented instead of the
Prefix and Suffix options:

In our case, there is a specified list of eight values that denote the range of animal
numbers in the wild. Clicking on Save field settings should now display the field
type in a drag and drop representation of the content type, as it will appear when
users attempt to use it:

It's easy enough to move things around to place them exactly as required on the
page—although you must remember to click Save to implement the changes.

To get back to the field's configuration page, click on configure. Now we can
implement some of the Widget settings that were skipped the first time round:

Chapter 7

[��]

In this case, an informative, human readable name has been provided along with a
default value for the select list. Initially, no default value options could be presented
because there were none specified in the Data settings section. At present, we have
no groups so the Display in group option is left as is. It is possible to use PHP to
determine what the default value should be, clicking on the Php code link and
entering it into the space provided—unless you have an exceedingly pressing reason
to use this, stay clear.

Advanced Content

[��]

Go ahead and save the changes by clicking on Save field settings, and head on over
to the Create content section and create a new Endangered Species post:

We now have, in addition to the default fields provided, a perfectly good method
of specifying the number of animals in the wild by selecting the appropriate values
from the select list. Furthermore, the data stored in the database is only an integer
and not the entire range; so, this is a pretty efficient way of doing things.

Be aware that representing information with an integer, while efficient,
means that if you do decide to change your data, then all legacy content
will reflect these changes (because the data stored is only a representation
and not the actually text information being displayed).

What if, in addition to the estimated numbers of the species, a field for entering the
scientific name for the animal in genus species format is required. It may also be
nice to have the number of breeding pairs in captivity, the total number of captive
animals, the number of wild breeding pairs, and any other statistical information
people might want about the species.

The species name is not really a statistic, so ideally, it would be presented separate
from the stats about the animal. CCK provides a way on intuitively grouping
information like this through the use of groups…

Chapter 7

[��]

Adding Groups
To create a group, click on the Add Group tab and fill out the form according to
how it should be presented—options that are required should always be open, but it
may be better to present less important options in collapsed form, so that users can
quickly scroll over them if they are not going to fill them out:

This screenshot shows the Statistics group that will hold the vital statistics of a given
endangered species. Once you have filled out the form, click Add to include it in the
content type. The group will now be present on the drag and drop list of the Manage
fields tab, and is presented with configure and remove options as shown here:

Advanced Content

[�0]

With the group added to the content type, we can now go ahead and create the other
fields that will constitute the input data for this group. This includes Estimated
Numbers in the Wild, so click on its configure link and modify the Display in group
section of the Widget settings like so:

Click Save field settings, and the field is now contained within the Statistics group:

After creating a few more fields, including the Species name, and adding them to the
Statistics group, we now have something like this:

Chapter 7

[�1]

Take note that links to each field are displayed above the drag and drop dialog for
quick access to each one's configuration page. You can also re-order fields within a
group, in the same way fields and groups are re-ordered within the content type.
Once everything is in the right place, go back to the Create content and look at the
new post page:

The Species (anyone know what Acinonyx means?) field is presented above the
Statistics group with each field in the correct order as specified in the Manage fields
page. So the Manage fields page allows us to control how the fields are presented
on the content creation page, but this still leaves us with the task of presenting the
captured data correctly in its various forms—be it in search results, teasers or
full pages.

Advanced Content

[��]

Displaying Fields
In order to determine how input data should be displayed on screen, click on the
Display fields tab next to Manage fields, when editing a content type. This brings up
two tabs that cater for General and Advanced settings, respectively:

The General tab allows the Teaser and Full node fields and their labels to be
displayed according to the settings made here. In the same way, the Advanced tab
deals with the display of this content type in RSS items, the search index, and search
results. Each field and group has a Label option to determine where the label is
displayed relative to the data it contains. For fields, the three options are Above,
Inline or Hidden. Groups only have two options, Above and Hidden—Inline
would not make much sense for a group.

Setting the Species Label to Above, as shown in the previous screenshot, displays its
field content like this:

Chapter 7

[��]

Setting it to Inline gives:

And finally, setting it to Hidden gives:

As an exercise, try out the different options available for each of the fields (and
group) in the Full node section. For example, changing the option to Hidden here,
produces this result:

It's important to realize that different fields have different options, depending on
what underlying type they are. An example of this is the Node reference type that
can display the Title(Link), Title(no link), Full node, Teaser, and Hidden. As
mentioned earlier, the Node reference type allows posters to reference another
node and in this case, I added a Similar Animals field to the Endangered Species
content type.

Selecting the Title(Link) option in the Full node column for this type and ensuring
that a few nodes have been referenced in a new post, like so (incidentally, this Node
reference field was created with the Autocomplete option that allows posters to
begin typing in the name of a post and select which of the available options are
presented in the drop down list—the actual node number is automatically added
when a choice is made):

Advanced Content

[��]

Displays the following when the content is viewed:

As requested, the user is presented with the titles of two other Endangered Species
posts in the form of links that will take the user to their content. This is a really nice
feature for providing connected and relevant content. Just as easily, we could have
specified Full node for the Similar Animals Node reference field in the in the Full
node column:

in which case, the entire nodes would be displayed instead of the title links in any
content that referenced them:

How you choose to present content is really up to your own preferences and what is
most expedient and useful for users in the context of how they utilize your site. It is
left as an exercise to go through the settings available under the Advanced tab and to
make use of all the default field types in the process. Remember that you need to run
the cron script before any new content will show up in search results (just in case you
want to play around with the Search Result column and view the results).

Chapter 7

[��]

Export & Import
Earlier in this section, we saw that there were additional tabs added to the Content
type page under Content management. The first one, Fields, provides a list of all
the fields added to the various content types and doesn't warrant much explanation
here. The other two, Export and Import provide a powerful facility to effectively copy
and paste content types whole or piece by piece.

For argument's sake, let's assume that the Endangered Species content type is
close but not quite the same as an Extinct Species content type that is going to be
added. Instead of recreating the new content type from scratch, we can duplicate the
Endangered Species type and modify it during the Export process, before importing
it as the new type.

Click on the Export tab and select the Endangered Species content type, and click
Submit. This brings up a list of field and group definitions that should be included
in the export:

For somewhat macabre reasons, we no longer need to include any of the fields
previously held in the Statistics group. Although, the Statistics group itself can be
used to house other stats about the extinct species. Accordingly, only the Species and
Similar Animals fields need to be exported to the new content type.

Advanced Content

[��]

Clicking on Submit, brings up the Export data text area, containing the information
that will be used by the Import feature to build the new content type. Copy this code
and then click on the Import tab and paste it into the space provided:

In this instance, the Content type is left as the default option, <Create>, because
we do not want to import these group and field definitions into any of the current
content types. If you did want to add a field or two into one of the existing content
types, you would select that Content type from the drop down list and add the new
field definition (obtained from your own site or someone else's site—wherever) into
the Import data section.

The export definition contains the content type value. In this case, we can't directly
import the new definition because the species content type already exists, so Drupal
would report a failure to import the type because is already there. To get around this,
edit the first few values of the Import data as follows:

$content[type] = array (
 'name' => 'Extinct Species',
 'type' => 'extinct',
 'description' => '',
 'title_label' => 'Common name',
 'body_label' => '',

Now we are effectively importing a completely new type of content (called extinct)
that happens to be based on the existing species content type. Clicking Submit will
add the new type to your list and you can now view it as expected:

Chapter 7

[��]

You might find that there are field definitions in other content types (yours or
someone else's) that could be imported instead of being recreated when modifying
content types. In this case, go through the process again, selecting the relevant
content type to export from, and then, choose the field to export, copy the export
code across to the Import section, and add the field to the relevant content type.

Adding Contributed Fields
One of the great things about CCK is that anyone can build and add custom field
types that can be incorporated into your own content types. Let's take a quick look
at an example of this. Head on over to the Drupal site and download both the Voting
API and Fivestar modules—the Fivestar module provides a custom field type that we
can use to add rating facilities to content, but it requires the Voting API module to be
enabled first.

Go ahead and extract and install both modules and then, first enable the Voting API
module then the Fivestar module. With that done, head on over to the Content types
page under Content management and click edit for the content type that you would
like users to be able to rate—for argument's sake, I will go with Endangered species.
Click on the Add field tab, enter a field name (something like field_rating), and
scroll down the page till you get to the FiveStar Rating option:

Advanced Content

[��]

Choose an option and click Create field to add it to the content type and then, ensure
that you set the configuration options to something appropriate for you—each option
is fairly well explained. Bear in mind that the Node ID field is the most important
because it determines exactly, the node that receives the value of the rating. In
this case, it's time to dust off your PHP skills and use it to dynamically select the
appropriate node ID—admittedly, this isn't ideal but it does serve to illustrate the
process for adding a contributed field, regardless of what it is.

As an addendum, Fivestar actually provides a nice rating widget that can be enabled
for a content type—on it's Edit page, in the list of settings categories, towards the
bottom of the page:

While not shown in the previous screenshot, there is also a Fivestar comment rating
widget that can disabled, optional or required. Like the Direct rating widget, there
is a preview available on the right-hand-side of the page. With your choices made,
click Save settings and then go post a piece of content for the type that now has the
Fivestar rating enabled.

Chapter 7

[��]

For example, a post of the Endangered species type, with Fivestar enabled, looks
like this:

Whenever a user makes a vote, the widget registers it for that specific node. How
these votes are tallied, displayed, and so on can all be configured from the Fivestar
and Voting API pages under Site configuration. Don't be surprised if you click the
widget only to find the vote is not registered immediately.

It is possible to set the widget to update straight away, but more than likely you can
leave this to update with the cron run—the rating widget can end up looking
like this:

In this case, Fivestar actually provides dual functionality in that it is possible
to provide a voting widget for users to rate a given piece of content as well as a
contributed field type that is utilized by posters of content—this could be useful
if, for example, a danger level rating should be supplied with each Endangered
species post.

Of course, each contributed field will come with its own entourage of settings and
configuration parameters, so be careful to ensure that you are entirely clear on how
the contrib functions before making it available to the site's content posters.

Advanced Content

[�0]

HTML, PHP, and Content Posting
In the event that you can't find a suitable module to do a task for you, or simply want
to create something yourself quickly, it's important to look at how to harness the
power of HTML and PHP to get the job done.

If it's layout you are talking about, then HTML is the order of the day. Alternatively,
if you want to create some dynamic content that can change depending on the state
of your site, or respond to user interaction, then PHP is the way forward. More than
likely, you will end up using a combination of both.

Unfortunately, we can't possibly hope to give you a comprehensive introduction into
either technology in the space we have here (although we will look over HTML quickly
in a moment). However, there are many online resources available to learn about
HTML and PHP for free, and we will list a bunch of them throughout this section.

For now, we will look at how to achieve some fairly useful tasks by way of
demonstrating how to create an about us page that will contain links to other useful
sites, pictures of the imaginary site team as well as some dynamic content.

Input Formats and Filters
It is necessary to stipulate the type of content we will be posting, in any given post.
This is done through the use of the Input format setting that is displayed when
posting content to the site—assuming the user in question has sufficient permissions
to post different types of content.

In order to control what is and is not allowed, head on over to the Input formats
link under Site configuration. This will bring up a list of the currently defined input
formats, like this:

Chapter 7

[�1]

At the moment, you might be wondering why we need to go to all this trouble to
decide whether people can add certain HTML tags to their content. The answer to
this is that because both HTML and PHP are so powerful, it is not hard to subvert
even fairly simple abilities for malicious purposes.

For example, you might decide to allow users the ability to link to their homepages
from their blogs. Using the ability to add a hyperlink to their postings, a malicious
user could create a Trojan, virus or some other harmful content, and link to it from
an innocuous and friendly looking piece of HTML like this:

<p>Hi Friends! My homepage is a great
place to meet and learn about my interests and hobbies. </p>

This snippet writes out a short paragraph with a link, supposedly to the author's
homepage, but in reality, the hyperlink reference attribute points to a trojan,
link_to_trojan.exe. That's just HTML; PHP can do a lot more damage—to the
extent that if you don't have proper security or disaster-recovery policies in place,
then it is possible that your site can be rendered useless or destroyed entirely.

Security is the main reason why, as you may have noticed from the previous
screenshot, anything other than Filtered HTML is unavailable for use by anyone
except the administrator. By default, PHP is not even present, let alone disabled.

When thinking about what permissions to allow, it is important to re-iterate
the tenet:

Never allow users more permissions than they require to complete their
intended tasks!

Advanced Content

[��]

As they stand, you might not find the input formats to your liking, and so Drupal
provides some functionality to modify them. Click on the configure link adjacent to
the Filtered HTML option, and this will bring up the following page:

The view tab provides the option to alter the Name property of the input format;
the Roles section in this case cannot be changed, but as you will see when we come
around to creating our own input format, roles can be assigned however you wish to
allow certain users to make use of an input format, or not.

The final section provides a checklist of the types of Filters to apply when using this
input format. In this previous screenshot, all have been selected, and this causes the
input format to apply the:

HTML corrector – corrects any broken HTML within postings to prevent
undesirable results in the rest of your page.

HTML filter – determines whether or not to strip or remove unwanted HTML.

•

•

Chapter 7

[��]

Line break converter – Turns standard typed line breaks (i.e. whenever a
poster clicks Enter) into standard HTML.
URL filter – allows recognized links and email addresses to be clickable
without having to write the HTML tags, manually.

The line break converter is particularly useful for users because it means that they
do not have to explicitly enter
 or <p> HTML tags in order to display new lines
or paragraph breaks—this can get tedious by the time you are writing your 400th
blog entry. If this is disabled, then unless the user has the ability to add the relevant
HTML tags, the content may end up looking like this:

Click on the Configure tab, at the top of the page, in order to begin working with the
HTML filter. You should be presented with something like this:

•

•

Advanced Content

[��]

The URL filter option is really there to help protect the formatting and layout of
your site. It is possible to have quite long URLs these days, and because URLs do not
contain spaces, there is nowhere to naturally split them up. As a result, a browser
might do some strange things to cater for the long string and whatever it is; this will
make your site look odd.

Decide how many characters the longest string should be and enter that number in
the space provided. Remember that some content may appear in the sidebars so you
can't let it get too long if they are supposed to be a fixed width.

The HTML filter section lets you specify whether to Strip disallowed tags, or escape
them (Escape all tags causes any tags that are present in the post to be displayed
as written). Remember that if all the tags are stripped from the content, you should
enable the Line break converter so that users can at least paragraph their content
properly. Which tags are to be stripped, is decided in the Allowed HTML tags
section, where a list of all the tags that are to be allowed can be entered—anything
else gets removed!

Selecting Display HTML help forces Drupal to provide HTML help for users
posting content—try enabling and disabling this option and browsing to this relative
URL in each case to see the difference: filter/tips. There is quite a bit of helpful
information on HTML in the long filter tips; so take a moment to read over those.

The filter tips can be reached whenever a user expands the Input format
section of the content post and clicks on More information about
formatting options at the bottom of that section.

Finally, the Spam link deterrent is a useful tool if the site is being used to bombard
members with links to unsanctioned (and often unsavory) products. Spammers will
use anonymous accounts to post junk (assuming anonymous users are allowed to post
content) and enabling this for anonymous posts is an effective way of breaking them.

This is not the end of the story because we also need to be able to create input
formats in the event we require something that the default options can't cater for. In
this case, let's assume that we want to add some picture files to the about us page that
will be created in due course. Now, there are several ways in which this can be done,
but there are three main criteria that need to be satisfied before we can consider
creating the page. We need to be able to:

1. Upload image files and attach them to the post.
2. Insert and display the image files within the body of the post.
3. Use PHP in order to dynamically generate some of the content (this option

is really only necessary to demonstrate how to embed PHP in a posting for
future reference).

Chapter 7

[��]

We have already seen how to perform task one when we discussed Upload in
Chapter XX on Adding Functionality. So assuming that you are able to attach files to
posts, this leaves us to deal with the second and third criterion. There are several
methods for displaying image files within posts. The one we will discuss here, does
not require us to download and install any contribution modules such as Img_assist.
Instead, we will use HTML directly to achieve this, specifically, we use the tag.

Take a look at the previous screenshot that shows the configure page of the Filtered
HTML input format. Notice that the tag is not available for use. Let's create
our own input format to cater for this, instead of modifying this default format.

Before we do, first enable the PHP Filter module under Modules in Site building
so that it can easily be used when the time comes. With that change saved, you will
find that there is now an extra option to the Filters section of each input format
configuration page:

It's not a good idea to enable the PHP evaluator for either of the default options,
but adding it to one of our own input formats will be ok to play with. Head on back
to the main input formats page under Site configuration (notice that there is an
additional input format available, called PHP code) and click on Add input format.
This will bring up the same configuration type page we looked at earlier. It is easy to
implement whatever new settings you want, based on how the input format is to
be used.

Advanced Content

[��]

For our example, we need the ability to post images and make use of PHP scripts so
make the new input format as follows:

As we will need to make use of some PHP code a bit later on, we have enabled the
PHP evaluator option, as well as prevented the use of this format for anyone but
ourselves—normally, you would create a format for a group of users who require
the modified posting abilities, but in this case, we are simply demonstrating how to
create a new input format; so this is fine for now.

Chapter 7

[��]

PHP should not be enabled for anyone other than yourself or a highly
trusted administrator who needs it to complete his or her work.

Click Save configuration to add this new format to the list, and then click on the
Configure tab to work on the HTML filter. The only change required between this
input format and the default Filtered HTML, in terms of HTML, is the addition of the
 and <div> tags separated by a space in the Allowed HTML tags list, as follows:

As things stand at the moment, you may run into problems with adding PHP code
to any content postings. This is because some filters affect the function of others,
and to be on the safe side, click on the Rearrange tab and set the PHP evaluator to
execute first:

Since the PHP evaluator's weight is the lowest, it is treated first, with all the others
following suit. It's a safe bet that if you are getting unexpected results when using a
certain type of filter, you need to come to this page and change the settings. We'll see
a bit more about this, in a moment.

Now, the PHP evaluator gets dibs on the content and can properly process any PHP.
For the purposes of adding images and PHP to posts (as the primary user), this is
all that is needed for now. Once satisfied with the settings, save the changes before
using this to create the about us page.

Before building the new page, it is probably most useful to have a short discourse on
HTML because it is a requirement if you are to attempt more complex postings.

Advanced Content

[��]

HTML
For a browser to render the neatly laid out and colorful pages it needs instructions on
what goes where and what color to give everything. This is the domain of HyperText
Markup Language (HTML), and Drupal is no exception in its use of HTML here.

Let's have a quick crash course on the various aspects of HTML before we go any
further:

Simplicity: From tables and frames to lists and images, as well as specifying
fonts and styles, HTML is a convenient and readily understandable
convention for web-page creation and layout.
Platform independence: HTML is platform independent (although not all
browsers are exactly the same), which makes sense if you think about it; the
last thing you would want, as the builder of a website, is to have to cater for
every different type of machine that could make use of HTML.
Tags: HTML comes in the form of opening and closing tags that tell your
browser how to display the information enclosed within them. For example,
the title of a page would be enclosed within the title tags like this: <title>My
Title Page</title>. Notice that a forward slash is used to distinguish a
closing tag from an opening tag.
Attributes: Tags can have attributes that modify, identify or define certain
aspects of a tag's behavior. For example, the style attribute in the following
HTML snippet defines the color of the paragraph, <p style="color:
blue;">I have a blue font</p>, when it is rendered in a browser.
Sections: An HTML page is enclosed within <html></html> tags and is
divided into <head></head> and <body></body> sections. The body tags
enclose the bulk of the page and contain the information seen on the actual
web page. In our case, we need not worry about this because all content is
automatically posted between the <body> tags.

This gives us a fair overview of what HTML is and does, but for practical purposes,
it is important to see what can be achieved right here and now, using the HTML that
is available to us. Actually, all HTML tags are available for you as the administrator
to use, but recall that you should only use this account during development; once the
site has gone live, you should post content using an input format that is designed for
the task.

The following table discusses each of the default allowed tags along with the
and <div> tags that have just been added. Bear in mind that it is not really practical
to show each and every attribute for each tag here, so if you would like to learn more
about each tag individually, then please take a look at http://www.htmlhelp.com,
which is an excellent resource for all things HTML and more:

•

•

•

•

•

Chapter 7

[��]

Tag Important Attributes Description
 src: gives the path to the image file.

alt: holds a description of the image.

The tag, unlike other
tags, does not require a closing
 tag. It is used to display
images within HTML pages,
and through the use of optional
attributes can accurately control
the appearance and layout of
images.

<div> style: used to specify a number of stylistic
issues such as background. Remember to
make use of CSS and class and id attributes for
anything but simple or once off style issues.

The <div> tag is the basic
building block of a page's layout.
It is used to define divisions or
section within a page and can
be controlled through the use of
attributes.

Tag Important Attributes Description
<a> href: specifies the destination URL of

the link.

name: allows bookmarks to be created
within web pages.

target: defines where to open the
link—most often this is a new page,
_blank, or the same page, _self.

The anchor element facilitates
the creation of hyperlinks
or bookmarks, which can be
navigated by users.

 The emphasis tag converts
standard text to italics.

 The strong tag renders text in
bold.

<cite> title: can be used to specify the
source or author of the citation in
question.

The citation tag allows text to
be referenced as coming from
another source or author. It is
often rendered in italics.

<code> The code tag changes the style
of the enclosed text to mimic
computer code's style.

 type: defines the type of bullet point to
be used: disc, square, or circle.

The unordered list creates a list
of bullet points—it requires the
use of the tag to stipulate
items in the list.

Advanced Content

[�0]

Tag Important Attributes Description
 The order list creates a numbered

list of bullets—it requires the use
of the tag to stipulate items
in the list.

 The list item tag creates a new
item within either an ordered or
unordered list; because of this
it is contained within </
ul>or tags.

<dl> The definition list tag creates a
structured list of items that are
defined by the <dt> and <dd>
tags.

<dt> The definition term tag creates
a term within a definition list. It
is contained within <dl></dl>
tags.

<dd> The definition description tag
creates a description of its parent
term—it is contained within
<dl></dl> tags.

This table really only lists a fraction of all the tags that are available to you to use.
Most tags also have a wide variety of required or optional attributes that you can
play around with in order to achieve the desired effect.

With that out of the way, we are ready to begin creating a slightly more advanced
posting than all the previous ones.

Creating a Feature-Rich Page
One of the cool things about creating a new page like this is that once it is done,
it can be reused pretty much anywhere else, substituting in only those values or
content that need to change. Obviously, you want the site to look fairly uniform, and
this supports the principle of code reuse—at least in terms of HTML.

It is quite likely that at some stage, you will want to create more than just one
standalone page. If this is the case, simply cut and paste whatever page is created
here and make whatever modification you need, before posting. Doing things in this
way will lend all your pages a similar look and feel above and beyond the attributes
already given to them by the current theme.

Chapter 7

[�1]

The about us page is going to have the following features:

Well-structured content
List of objectives
Inline pictures of the team
Information about the project
List of important links
Some dynamic, PHP-based content
Advertising

In order to meet the requirements stated, we are going to need to make use of the
following tags:

<div>

<a>

along with a few others that we will use to demonstrate the various types of available
font styles. In order to create a slightly more complex page like this, consider working
with a proper code/HTML editor (a search on Google will turn up many results) that
can indent code automatically as well as color code the various tags and content, to
make life easier.

OK; we are pretty much ready to begin. I am going to list the entire page's code piece
by piece instead of all at once because there are quite a few important things that are
worth discussing as we go. However, nothing here is too complicated once you have
the hang of HTML and PHP. Before we begin, it is better that we look at the resulting
page to get a good idea of what we are working towards. The following screenshot
shows the bulk of the page:

•

•

•

•

•

•

•

•

•

•

•

•

Advanced Content

[��]

I hope you'll agree that this page is fairly pleasing to the eye—no comments on the
photo please! For very little work, it is quite easy to achieve a look and layout such
as this. What isn't apparent from this page, is that the list of names given here, along
with their email links, was provided by a short PHP script that was embedded into
the HTML page.

Chapter 7

[��]

Let's get on with the code—to start with, we have the following:

<div style="text-align: center;">
 The CWC
</div>
<div>
 The Contechst Wildlife Community was started by a group
of individuals in <cite title="South Africa">Cape Town</cite>. Through
hard work, dedication and plenty of play time, they have built a truly
international community that strives to effect change with regards to
all things related to our biosphere.
 </div>
 <div>
 <p>
 We have the following goals:
 </p>
</div>

This first section is used to declare div regions that are ultimately responsible for
laying out all the content. Notice that I have used the text-align attribute to make the
heading move to the center of the page.

If you look past this snippet of code in the previous listing, you will notice the use of
the <cite> tag, with a title attribute defined. This is here to show you a novel use
for providing references. If a user hovers their cursor over the text contained within
the <cite> tag (in this instance, Cape Town), the text defined in the title attribute
(in this case, South Africa) will be displayed on screen. In this way, you can clarify
or explain important terms without cluttering up your pages.

Continuing along, we get the following ordered list of goals:

 To provide an online meeting place for like-minded people</
li>
 To discuss and monitor global conservation and wildlife
activities
 To influence policy and effect change in hard-hit areas
 To support front-line activists like SeaShepherd
 To raise funds for animal relief efforts and care

As you can see, each list item contains exactly one line of content (or one goal, in
this case), and all are contained within the and tags. The next section is
where we meet some PHP code as well as insert our image of the team:

<div style="text-align: center;">
 Meet the Team

Advanced Content

[��]

</div>
<div>
 In no specific order, the following people constitute the bulk
of the full-time staff here at CWC (You can email them by clicking on
the names shown below):
</div>
<div style="float: right;">
 <img src="http://localhost/mf4good/sites/default/files/team.jpg"
alt="The Team" width="250" />
 </div>
<div>

<?php
 $team = array('Tolis Welch', 'David Mercer', 'Bronagh Casey', 'Nic
Malan', 'Brian Reid', 'Rochelle Reid');
 foreach($team as $item){
 $name = explode(" ", $item);
 echo '' . $item .
'';
 }
?>

</div>

To summarize, in this section we:

1. Added an inline image with img and aligned it to the right of the page.
2. Created an unordered list with the tag.
3. Opened up a PHP script by using the <?php tag.
4. Created an array of team member names.
5. Used a PHP foreach loop, to iterate through each name in the array.
6. Obtained the first name of each member by using the built-in PHP explode

function.
7. Echoed the results, replete with HTML tags to the screen.

The actual email links were created using the <a> tag and the special mailto option
within the href attribute.

If you have the URL filter enabled then Drupal would automatically
make any email addresses clickable without the need for the <a> tag.

Chapter 7

[��]

As you can see, there are three attributes used here to get the image properly
displayed. The first, src, gives the path to the image file to be displayed; the
second gives a description of the photo so that if, for some reason, the picture is not
displayed, then the text The Team will be shown instead. Finally, we picked a size
for the width of the photo in order to fit it to the page properly. Take note:

Keep image files small! You can reduce their quality and size using image
editing software—large images slow down your site.

The email addresses were built from the first name of the team member so the first
two addresses are Tolis@cwc.org and David@cwc.org. This is slightly contrived as
you might not have such an ordered system to your email addresses, but it serves to
demonstrate how PHP can be embedded into pages quite easily.

The following section of HTML prints out a list of links to a few other organizations
that may be of interest to users:

 <div>
<p>At CWC we strive to do the right thing! Please take the
time to look over the site and register in order to start interacting
with the community - our natural world needs all the help it can
get.</p>
<p>If you are interested in getting involved in any one of the number
of critically important organizations around the world, then please
feel free to browse any of the links given below.</p>
 </div>
<div align="center">
 Our Friends
 </div>
<div>

 Sea Shepherd

 World Wildlife Fund

 The Royal SPCA

 </div>

Advanced Content

[��]

This part is fairly straightforward, so we move on to the last item on the page—the
advertisement:

 <div style="text-align: center;">
 Our Sponsors!
 </div>
<div style="text-align: center;">

 <img src="http://localhost/mf4good/sites/default/files/
PacktLogoSmall.png" alt="Packt Publishers" />

 </div>
</table>

This makes use of both a hyperlink and an image file. In effect, we have turned the
image, the Packt logo, into a hyperlink by enclosing it within <a> and tags. This
means that people can not only view the sponsor's logo, but if they wish, they can
also visit the sponsor's site directly by clicking on the image.

With that done, you not only have a nice, shiny new about us page, but also a rough
template from which to make other pages with a similar look and feel. There is a
lot more that goes into giving pages their look and feel, but this involves the use of
themes, which we have not yet discussed.

It is generally a bad idea to include absolute file paths in content because
if you move your site to another host, or deploy it after development,
these links can break—though it's quick and easy for the purposes of this
demonstration. Consider using the Inline module or something to help in
this regard.

With the page completed, we are not quite finished yet, because it still needs to be
added to the site. In order to do this, we need to look at how to actually work with
the content we are adding.

Posting a Feature-Rich Page
This brief section will outline the process for getting pages up and on the site. The
following list shows the steps required:

1. Create a new post, or edit one that is to be modified. In our case, we have an
About us page already, so as the administrator we can simply click on the edit
tab when viewing the About us page.

2. Enter or modify the title of the page accordingly.

Chapter 7

[��]

3. Select the correct input format. In this case, we have a specially created
format called Special pages.

4. Copy and paste the HTML into the Body text area.
5. Ensure the Authoring information and Publishing options are all correct.
6. For something like the About us page, it is probably best to disable comments

as you really want this to be a standalone page and not subject to any debate
from the rest of the community.

7. Next, ensure that the Menu settings are appropriate for the page being
added. In this case, we have the following settings in place:

That's it! Once you are ready to view the page, click on Preview, and if everything
looks in order, submit it. Remember that it can easily be edited again if anything is
wrong.
Obviously, if you are not familiar with either HTML or PHP, you will need to
practice a bit with these, but the following links should provide a start:

http://www.php.net

http://www.phpbuilder.com

http://www.htmlgoodies.com

http://www.w3schools.com

Hopefully, you now feel quite confident about incorporating more complex pages
into your site.

•
•
•
•

Advanced Content

[��]

Summary
With this chapter out of the way, you should have a good understanding of the
tasks that lie ahead in creating a fully functional, content-focused website. If you
are not already familiar with HTML and PHP, then I recommend you spend some
time learning a bit about HTML before continuing on with the next chapter. That
said, you have seen how to create input formats to allow different types of HTML or
PHP content into posts, as well as looking at how to create a fairly nice HTML-based
dynamic web page.

While this is certainly important in terms of creating an aesthetically pleasing site,
the real nuts and bolts of your content management lesson came with the discussion
on taxonomy. Drupal's taxonomy system sets it apart from other CMS technologies
and provides the flexibility and power to implement pretty much any type of
structure that we can imagine for our content. With powerful features like tagging
available at the click of a button, you are sitting at the controls of one of the best
systems around.

CCK is another powerful feature of Drupal that can provide a vast array of new and
interesting content types to cater for virtually any type of content. As time goes by,
more and more CCK related contributions will become available and you are urged
to keep checking the available modules. Unfortunately, at the time of writing, the
Views contrib was not available to work in conjunction with CCK but please take the
time to check it out when it does arrive.

With much of the hard work out of the way, we can turn our attention to the most
creative and, in my opinion, fun part of creating a Drupal site. The following chapter
will discuss themes and how to create a unique and appealing look for the new site.

