
CHAPTER 1

Programming with
Anonymous Types

IN THIS CHAPTER

. Understanding Anonymous
Types

. Programming with Anonymous
Types

. Databinding Anonymous Types

. Testing Anonymous Type Equality

. Using Anonymous Types with
LINQ Queries

. Introducing Generic
Anonymous Methods

“Begin at the beginning and go on till you come to the end:
then stop.”

—Lewis Carroll, from Alice’s Adventures in Wonderland

Finding a beginning is always a little subjective in
computer books. This is because so many things depend on
so many other things. Often, the best we can do is put a
stake in the ground and start from that point. Anonymous
types are our stake.

Anonymous types use the keyword var. Var is an interest-
ing choice because it is still used in Pascal and Delphi
today, but var in Delphi is like ByRef in Visual Basic (VB) or
ref in C#. The var introduced with .NET 3.5 indicates an
anonymous type. Now, our VB friends are going to think,
“Well, we have had variants for years; big deal.” But var is not
a dumbing down and clogging up of C#. Anonymous types
are something new and necessary.

Before looking at anonymous types, let’s put a target on our
end goal. Our end goal is to master LINQ (integrated
queries) in C# for objects, Extensible Markup Language
(XML), and data. We want to do this because it’s cool, it’s
fun, and, more important, it is very powerful and expres-
sive. To get there, we have to start somewhere and anony-
mous types are our starting point.

Anonymous types quite simply mean that you don’t specify
the type. You write var and C# figures out what type is
defined by the right side, and C# emits (writes the code),
indicating the type. From that point on, the type is strongly
defined, checked by the compiler (not at runtime), and
exists as a complete type in your code. Remember, you

6 CHAPTER 1 Programming with Anonymous Types

didn’t write the type definition; C# did. This is important because in a query language,
you are asking for and getting ad hoc types that are defined by the context, the query
result. In short, your query’s result might return a previously undefined type.

An important concept here is that you don’t write code to define the ad hoc types—C#
does—so, you save time by not writing code. You save design time, coding time, and
debug time. Microsoft pays that cost. Anonymous types are the vessel that permit you to
use these ad hoc types. By the time you are done with this chapter, you will have
mastered the left side of the operator and a critical part of LINQ.

In addition, to balance the book, the chapters are laced with useful or related concepts that
are generally helpful. This chapter includes a discussion on generic anonymous methods.

Understanding Anonymous Types
Anonymous types defined with var are not VB variants. The var keyword signals the
compiler to emit a strong type based on the value of the operator on the right side.
Anonymous types can be used to initialize simple types like integers and strings but
detract modestly from clarity and add little value. Where var adds punch is by initializing
composite types on the fly, such as those returned from LINQ queries. When such an
anonymous type is defined, the compiler emits an immutable—read-only properties—class
referred to as a projection.

Anonymous types support IntelliSense, but the class should not be referred to in code, just
the members.

The following list includes some basic rules for using anonymous types:

. Anonymous types must always have an initial assignment and it can’t be null
because the type is inferred and fixed to the initializer.

. Anonymous types can be used with simple or complex types but add little value to
simple type definitions.

. Composite anonymous types require member declarators; for example, var joe =
new {Name=”Joe” [, declaratory=value, ...]}. (In the example, Name is the
member declaratory.)

. Anonymous types support IntelliSense.

. Anonymous types cannot be used for a class field.

. Anonymous types can be used as initializers in for loops.

. The new keyword can be used and has to be used for array initializers.

. Anonymous types can be used with arrays.

. Anonymous types are all derived from the Object type.

. Anonymous types can be returned from methods but must be cast to object, which
defeats the purpose of strong typing.

7Programming with Anonymous Types

1

. Anonymous types can be initialized to include methods, but these might only be of
interest to linguists.

The single greatest value and the necessity of anonymous types is they support creating
single-use elements and composite types returned by LINQ queries without the need for
the programmer to fully define these types in static code. That is, the designers can focus
significantly on primary domain types, and the programmers can still create single-use
anonymous types ad hoc, letting the compiler write the class definition.

Finally, because anonymous types are immutable—think no property setters—two sepa-
rately defined anonymous types with the same field values are considered equal.

Programming with Anonymous Types
This chapter continues by exploring all of the ways you can use anonymous types, paving
the way up to anonymous types returned by LINQ queries, stopping at the full explana-
tion of the LINQ query here. You can simply think of the query as a first look at queries
with the focus being on the anonymous type itself and what you can do with those types.

Defining Simple Anonymous Types

A simple anonymous type begins with the var keyword, the assignment operator (=), and
a non-null initial value. The anonymous type is assigned to the name on the left side of
the assignment operator, and the type emitted by the compiler to Microsoft Intermediate
Language (MSIL) is determined by the right side of the operator. For instance:

var title = “LINQ Unleashed for C#”;

uses the anonymous type syntax and assigns the string value to “LINQ Unleashed for C#”.
This code is identical in the MSIL to the following:

string title = “LINQ Unleashed for C#”;

This emitted code equality can be seen by looking at the Intermediate Language (IL) with
the Intermediate Language Disassembler (ILDASM) utility (see Figure 1.1).

The support for declaring simple anonymous types exists more for completeness and
symmetry than utility. In departmental language wars, purists are likely to rail against
such use as it adds ambiguity to code. The truth is the type of the data is obvious in such
simple use examples and it hardly matters.

Using Array Initializer Syntax

You can use anonymous type syntax for initializing arrays, too. The requirements are that
the new keyword must be used. For example, the code in Listing 1.1 shows a simple
console application that initializes an anonymous array of Fibonacci numbers. (The anony-
mous type and array initialization statement are highlighted in bold font.)

8 CHAPTER 1 Programming with Anonymous Types

FIGURE 1.1 Looking at the .locals init statement and the Console::Write(string) state-
ment in the MSIL, it is clear that title is emitted as a string.

LISTING 1.1 An Anonymous Type Initialized with an Array of Integers

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ArrayInitializer

{

class Program

{

static void Main(string[] args)

{

// array initializer

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21 };

Console.WriteLine(fibonacci[0]);

Console.ReadLine();

}

}

}

The first eight numbers in the Fibonacci system are defined on the line that begins var
fibonacci. Fibonacci numbers start with the number 1 and the sequence is resolved by
adding the prior two numbers. (For more information on Fibonacci numbers, check out
Wikipedia; Wikipedia is wicked cool at providing detailed facts about such esoterica.)

Even in the example shown in Listing 1.1, you are less likely to get involved in language
ambiguity wars if you use the actual type int[] instead of the anonymous type syntax
for arrays.

9Programming with Anonymous Types

1

Creating Composite Anonymous Types

Anonymous types really start to shine when they are used to define composite types, that
is, classes without the “typed” class definition. Think of this use of anonymous types as
defining an inline class without all of the typing. Listing 1.2 shows an anonymous type
representing a lightweight person class.

LISTING 1.2 An Anonymous Type Containing Two Fields and Two Properties Without All of the
Class Plumbing Typed By the Programmer

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace ImmutableAnonymousTypes

{

class Program

{

static void Main(string[] args)

{

var dena = new {First=”Dena”, Last=”Swanson”};

//dena.First = “Christine”; // error - immutable

Console.WriteLine(dena);

Console.ReadLine();

}

}

}

The anonymous type defined on the line starting with var dena emits a class, referred to
as a projection, in the MSIL (see Figure 1.2). Although the projection’s name—the class
name—cannot be referred to in code, the member elements—defined by the member
declarators First and Last—can be used in code and IntelliSense works for all the elements
of the projection (see Figure 1.3).

Another nice feature added to anonymous types is the overloaded ToString method. If
you look at the MSIL or the output from Listing 1.2, you will see that the field names and
field values, neatly formatted, are returned from the emitted ToString method. This is
useful for debugging.

Adding Behaviors to Anonymous Composite Types
If you try to add a behavior to an anonymous type at initialization—for instance, by
using an anonymous delegate—the compiler reports an error. However, it is possible with
a little bending and twisting to add behaviors to anonymous types. The next section
shows you how.

10 CHAPTER 1 Programming with Anonymous Types

FIGURE 1.2 Anonymous types save a lot of programming time when it comes to composite
types, as shown by the elements emitted to MSIL.

FIGURE 1.3 IntelliSense works quite well with anonymous types.

Adding Methods to Anonymous Types
To really understand language possibilities, it’s helpful to bend and twist a language to
make it do things it might not have been intended to do directly. One of these things is
adding behaviors (aka methods). Although it might be harder to find a practical use for
anonymous type–behaviors, Listing 1.4 shows you how to add a behavior to and use that
behavior with an anonymous type. (The generic delegate Func in bold in the listing is
used to initial the anonymous type’s method.)

11Programming with Anonymous Types

1

LISTING 1.4 Adding a Behavior to an Anonymous Type

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Reflection;

namespace AnonysmousTypeWithMethod

{

class Program

{

static void Main(string[] args)

{

// adding method possibility

Func<string, string, string> Concat1 =

delegate(string first, string last)

{

return last + “, “ + first;

};

// whacky method but works

Func<Type, Object, string> Concat2 =

delegate(Type t, Object o)

{

PropertyInfo[] info = t.GetProperties();

return (string)info[1].GetValue(o, null) +

“, “ + (string)info[0].GetValue(o, null);

};

var dena = new {First=”Dena”, Last=”Swanson”, Concat=Concat1};

//var dena = new {First=”Dena”, Last=”Swanson”, Concat=Concat2};

Console.WriteLine(dena.Concat(dena.First, dena.Last));

//Console.WriteLine(dena.Concat(dena.GetType(), dena));

Console.ReadLine();

}

}

}

The technique consists of defining an anonymous delegate and assigning that anonymous
delegate to the generic Func class. In the example, Concat was defined as an anonymous
delegate that accepts two strings, concatenates them, and returns a string. You can assign
that delegate to a variable defined as an instance of Func that has the three string parame-
ter types. Finally, you assign the variable Concat to a member declarator in the anony-
mous type definition (referring to var dena = new {First=”Dena”, Last=”Swanson”,
Concat=Concat}; now).

12 CHAPTER 1 Programming with Anonymous Types

After the plumbing is in place, you can use IntelliSense to see that the behavior—Concat—
is, in fact, part of the anonymous type dena, and you can invoke it in the usual manner.

Using Anonymous Type Indexes in For Statements

The var keyword can be used to initialize the index of a for loop or the recipient object of
a foreach loop. The former is a simple anonymous type and the latter becomes a useful
construct when the container to iterate over is something more than a sample collection.
Listing 1.5 shows a for statement, and Listing 1.6 shows the foreach statement, both
using the var construct.

LISTING 1.5 Demonstrating How to Iterate Over an Array of Integers—Using the Fibonacci
Numbers from Listing 1.1—and the var Keyword to Initialize the Index

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousForLoop

{

class Program

{

static void Main(string[] args)

{

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21 };

for(var i=0; i<fibonacci.Length; i++)

Console.WriteLine(fibonacci[i]);

Console.ReadLine();

}

}

}

LISTING 1.6 Demonstrating Basically the Same Code but Using the More Convenient foreach
Construct

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousForEachLoop

{

class Program

{

static void Main(string[] args)

13Programming with Anonymous Types

1

LISTING 1.6 Continued

{

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21 };

foreach(var fibo in fibonacci)

Console.WriteLine(fibo);

Console.ReadLine();

}

}

}

The only requirement that must be met for an object to be the iterand in a foreach state-
ment is that it must functionally represent an object that implements IEnumerable or
IEnumerable<T>—the generic equivalent. Incidentally, this is also the same requirement
for bindability, as in binding to a GridView.

TIP

At any time, you can branch in for or foreach statements with the break or continue
keywords or the goto, return, or throw statements.

An all-too-common use of the for construct is to copy a subset of elements from one
collection of objects to a new collection, for example, copying all the customers in the
48843 ZIP code to a customersToCallOn collection. In C# 2.0, the yield return and yield

break key phrases actually played this role. For example, yield return signaled the
compiler to emit a state machine in MSIL—in essence, it emitted the copy collection for you.

In .NET 3.5, the ability to query collections, datasets, and XML to essentially ask questions
about data or copy some elements is one of those things that LINQ does very well. Listing
1.7 shows code that uses a LINQ statement to return just the numbers in the Fibonacci
short sequence that are divisible by 3. (For now, don’t worry about understanding all of
the elements of the query.)

LISTING 1.7 A foreach Statement Whose Iterand Is Derived from a LINQ Query

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousForEachLoopFromExpression

{

class Program

{

14 CHAPTER 1 Programming with Anonymous Types

LISTING 1.7 Continued

static void Main(string[] args)

{

var fibonacci = new int[]{ 1, 1, 2, 3, 5, 8, 13, 21, 33, 54, 87 };

// uses LINQ query

foreach(var fibo in from f in fibonacci where f%3==0 select f)

Console.WriteLine(fibo);

Console.ReadLine();

}

}

}

The LINQ query—used as the iterand in the foreach statement—makes up this part of the
Listing 1.7:

from f in fibonacci where f % 3 == 0 select f

For now, it is enough to know that this query meets the requirement that it returns an
enumerable result, in fact, IEnumerable<T> where T is an int type.

If this is your first experience with LINQ, the query might look strange. The capability and
power and this book will quickly make them familiar and desirable friends. For now, it is
enough to know that queries meet the requirement of an enumerable resultset and can be
used in a foreach statement.

Anonymous Types and Using Statements

The using statement is shorthand notation for try...finally. With try...finally and
using, the purpose is to ensure resources are cleaned up before the using block exits or
the finally block is run. This is accomplished by calling Dispose, which implies that
items created in using statements implement IDisposable. Employ using when the
created types implement IDisposable—like SqlConnections—and use try...finally

when you need to do some kind of cleanup work, but do not necessarily need to invoke
Dispose (see Listing 1.8).

LISTING 1.8 Using Statement and var Work Because SqlConnection Implements IDisposable

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Data;

using System.Data.SqlClient;

namespace AnonymousUsingStatement

15Programming with Anonymous Types

1

LISTING 1.8 Continued

{

class Program

{

static void Main(string[] args)

{

string connectionString =

“Data Source=BUTLER;Initial Catalog=AdventureWorks2000;” +

“Integrated Security=True”;

using(var connection = new SqlConnection(connectionString))

{

connection.Open();

Console.WriteLine(connection.State);

Console.ReadLine();

}

}

}

}

The help documentation will verify that SqlConnection is derived from DBConnection,
which, in turn, implements IDisposable. You can use a tool like Anakrino or Reflector—
free decompilers and disassemblers—to see that Dispose in DBConnection invokes the
Close method on a connection.

To really understand how things are implemented, you can use ILDASM—or one of the
previously mentioned decompilers—and look at the MSIL that is emitted. If you look at
the code in Listing 1.8’s IL, you can clearly see the substitution of using for a properly
configured try...finally block. (The try element—after SqlConnection creation—and
the finally block invoking Dispose are shown in bold font in Listing 1.9.)

LISTING 1.9 The MSIL for the var and using Statement in Listing 1.8

.method private hidebysig static void Main(string[] args) cil managed

{

.entrypoint

// Code size 66 (0x42)

.maxstack 2

.locals init ([0] string connectionString,

[1] class [System.Data]System.Data.SqlClient.SqlConnection connection,

[2] bool CS$4$0000)

IL_0000: nop

IL_0001: ldstr “Data Source=BUTLER;Initial Catalog=AdventureWorks2”

+ “000;Integrated Security=True”

IL_0006: stloc.0

16 CHAPTER 1 Programming with Anonymous Types

LISTING 1.9 Continued

IL_0007: ldloc.0

IL_0008: newobj instance void

➥[System.Data]System.Data.SqlClient.SqlConnection::.ctor(string)

IL_000d: stloc.1

.try

{

IL_000e: nop

IL_000f: ldloc.1

IL_0010: callvirtinstance void

[System.Data]System.Data.Common.DbConnection::Open()

IL_0015: nop

IL_0016: ldloc.1

IL_0017: callvirt instance valuetype[System.Data]System.Data.ConnectionState

[System.Data]System.Data.Common.DbConnection::get_State()

IL_001c: box [System.Data]System.Data.ConnectionState

IL_0021: call void [mscorlib]System.Console::WriteLine(object)

IL_0026: nop

IL_0027: call string [mscorlib]System.Console::ReadLine()

IL_002c: pop

IL_002d: nop

IL_002e: leave.s IL_0040

} // end .try

finally

{

IL_0030: ldloc.1

IL_0031: ldnull

IL_0032: ceq

IL_0034: stloc.2

IL_0035: ldloc.2

IL_0036: brtrue.s IL_003f

IL_0038: ldloc.1

IL_0039: callvirt instance void [mscorlib]System.IDisposable::Dispose()

IL_003e: nop

IL_003f: endfinally

} // end handler

IL_0040: nop

IL_0041: ret

} // end of method Program::Main

You don’t have to master IL to use .NET effectively, but you can learn from it and writing
.NET emitters—code that emits IL directly—is supported in the .NET Framework. As
shown in the MSIL, you can infer, for example, that the proper way to use try...finally
is to create the protected object, try to use it, and, finally, clean it up. If you read a little
further—in the finally block starting with IL 0030—you can see that the compiler also

17Programming with Anonymous Types

1

put a check in to ensure that the protected object, the SqlConnection, is compared with
null before Dispose is called. This code is demonstrated in IL 0030, IL 0031, IL 0032, and
the branch statement on IL 0036.

Returning Anonymous Types from Functions

Anonymous types can be returned from functions because the garbage collector (GC)
cleans up any objects, but outside of the defining scope, the anonymous type is an
instance of an object. Unfortunately, returning an object defeats the value of the
IntelliSense system and the strongly typed nature of anonymous types. Although you
could use reflection to rediscover the capabilities of the anonymous type, again you are
taking a feature intended to make life more convenient and making it somewhat inconve-
nient again. Listing 1.10 puts these elements together, but as a practical matter, it is best
to design solutions to use anonymous types within the defining scope. (Ironically, using
objects within the defining scope was a style issue used in C++ to reduce the probability of
memory leaks. Those familiar with C++ won’t find this slight quirk of anonymous types
any more inconvenient.)

LISTING 1.10 Returning an Anonymous Type from a Method Defeats the Strongly Typed Utility
of Anonymous Types

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Reflection;

namespace ReturnAnonymousTypeFromMethod

{

class Program

{

static void Main(string[] args)

{

var anon = GetAnonymous();

Type t = anon.GetType();

Console.WriteLine(t.GetProperty(“Stock”).GetValue(anon, null));

Console.ReadLine();

}

public static object GetAnonymous()

{

var stock = new {Stock=”MSFT”, Price=”32.45”};

return stock;

}

}

}

18 CHAPTER 1 Programming with Anonymous Types

Although it is intellectually satisfying to play with the reflection subsystem, writing code
like that in Listing 1.10 is a slow and painful means to an end. (In addition, the code in
Listing 1.10, as written, is fraught with the potentiality for bugs due to null values being
returned from GetType, GetProperty, and GetValue.)

Databinding Anonymous Types
Some interesting startups got blown up when the stock market bubble burst, such as
PointCast. PointCast searched the web—based on criteria the user provided—and
displayed stock prices on a ticker and news in a browsable environment. One of the possi-
ble kinds of data was streaming stock prices. (Thankfully, the 1990s day-trading craze is
over, but the ability to get such data is still interesting.)

This section looks at how you can combine cool technologies, such as anonymous types,
AJAX, HttpWebRequests, HttpWebResponses, and queries to Yahoo!’s stock-quoting capabil-
ity, and assemble a web stock ticker. Aside from the code, a demonstration of data-binding
anonymous types, and a brief description of what role the various technology elements
are playing, this book doesn’t elaborate in detail on features like AJAX (because of space
and topic constraints). (For more information on web programming, see Stephen
Walther’s ASP.NET 3.5 Unleashed.)

The sample (in Listing 1.11) is actually very easy to complete, but uses some very cool
technology and plumbing underneath. In the solution, a website project was created. The
application contains a single .aspx web page. On that page, a ScriptManager,
UpdatePanel (both AJAX controls), a DataList, Label, and AJAX Timer are added. The
design-time view of the page is shown in Figure 1.4 and the runtime view is shown in
Figure 1.5. (Listing 1.12 shows the settings for the Web controls.)

FIGURE 1.4 Just five controls and you have an asynchronous AJAX page.

FIGURE 1.5 A very simple design but the code is actually updating the stock prices every 10
seconds with that postback page flicker.

19Databinding Anonymous Types

1

Because of anonymous types, the code to actually query the stock process from Yahoo! is
very short (see Listing 1.11).

LISTING 1.11 This Code Uses HttpWebRequest and HttpWebResponse to Request Stock
Quotes from Yahoo!

using System;

using System.Data;

using System.Diagnostics;

using System.Configuration;

using System.Collections;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Web.UI.HtmlControls;

using System.Xml.Linq;

using System.Web.Services ;

using System.Net;

using System.IO;

using System.Text;

namespace DataBindingAnonymousTypes

{

public partial class _Default : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

Update();

}

private void Update()

{

var quote1 = new {Stock=”DELL”, Quote=GetQuote(“DELL”)};

var quote2 = new {Stock=”MSFT”, Quote=GetQuote(“MSFT”)};

var quote3 = new {Stock=”GOOG”, Quote=GetQuote(“GOOG”)};

var quotes = new object[]{ quote1, quote2, quote3 };

DataList1.DataSource = quotes;

DataList1.DataBind();

Label3.Text = DateTime.Now.ToLongTimeString();

}

protected void Timer1_Tick(object sender, EventArgs e)

{

20 CHAPTER 1 Programming with Anonymous Types

LISTING 1.11 Continued

//Update();
}

public string GetQuote(string stock)
{
try
{
return InnerGetQuote(stock);

}
catch(Exception ex)
{
Debug.WriteLine(ex.Message);
return “N/A”;

}
}

private string InnerGetQuote(string stock)
{
string url = @”http://quote.yahoo.com/d/quotes.csv?s={0}&f=pc”;
var request = HttpWebRequest.Create(string.Format(url, stock));

using(var response = request.GetResponse())
{
using(var reader = new StreamReader(response.GetResponseStream(),
Encoding.ASCII))

{
return reader.ReadToEnd();

}
}

}
}

}

The method InnerGetQuote has a properly formatted uniform resource locator (URL)
query for the Yahoo! stock-quoting feature. Next, an HttpWebRequest sends the URL query
to Yahoo! Then, the HttpWebResponse—returned by request.GetResponse—is requested
and a StreamReader reads the response. Easy, right?

All of this code is run by the Update method. Update creates anonymous types containing
a Stock and Quote field (which are populated by the GetQuote and InnerGetQuote

methods). An anonymous array of these quote objects is created and all of this is bound to
the DataList. The DataList itself has template controls that are data bound to the Stock
and Quote fields of the anonymous type. Figure 1.6 shows the template design of the
DataList. The very easy binding statement is shown in Figure 1.7.

21Databinding Anonymous Types

1

All of the special features, such as template editing and managing bindings, are accessible
through the DataList Tasks button, which is shown to the right of the DataList in Figure
1.4. You can also edit elements such as binding statements directly in the ASP designer.
Listing 1.12 shows the ASP/HTML for the web page.

LISTING 1.12 The ASP That Creates the Page Shown in Figure 1.4 (Design Time) and Figure
1.5 (Runtime)

<%@ Page Language=”C#” AutoEventWireup=”true” CodeBehind=”Default.aspx.cs”

➥Inherits=”DataBindingAnonymousTypes._Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

➥ “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>

<title>Untitled Page</title>

</head>

FIGURE 1.6 The template view of the DataList is two Label controls and the | character.

FIGURE 1.7 The binding statements for bound template controls have been very short (as
shown) since Visual Studio 2005.

22 CHAPTER 1 Programming with Anonymous Types

LISTING 1.12 Continued

<body>

<form id=”form1” runat=”server”>

<asp:ScriptManager ID=”ScriptManager1” runat=”server”>

</asp:ScriptManager>

<div>

</div>

<asp:UpdatePanel ID=”UpdatePanel1” runat=”server” EnableViewState=”False”>

<ContentTemplate>

<asp:DataList ID=”DataList1” runat=”server” RepeatDirection=”Horizontal”>

<itemtemplate>

<asp:Label ID=”Label1” runat=”server” Text=’<%# Bind(“Stock”) %>’>

➥</asp:Label>

 <asp:Label ID=”Label2” runat=”server” Text=’<%# Bind(“Quote”) %>’>

➥</asp:Label>

 |

</itemtemplate>

</asp:DataList>

<asp:Label ID=”Label3” runat=”server” Text=”Label”></asp:Label>

</ContentTemplate>

<triggers>

<asp:asyncpostbacktrigger ControlID=”Timer1” EventName=”Tick” />

</triggers>

</asp:UpdatePanel>

<asp:Timer ID=”Timer1” runat=”server” Interval=”10000” ontick=”Timer1_Tick”>

</asp:Timer>

</form>

</body>

</html>

The really neat thing about this application (besides getting stock quotes) is that the post-
backs happen transparently with AJAX. The way AJAX works is that an asynchronous
postback happens and all of the code runs except the part that renders the new page data.
Instead, text is sent back and JavaScript updates small areas of the page.

The underlying technology for AJAX is an XHTMLRequest, and this technology in its raw
form has been around for a while. But, the raw form required wiring up callbacks and
spinning your own JavaScript. You can still handcraft AJAX code of course, but now there
are web controls, such as the UpdatePanel and Timer, that take care of the AJAX plumb-
ing for you.

The elements that initiate the AJAX behavior are called triggers. Triggers can really be any
postback event. Listing 1.12 uses the AJAX Timer’s Tick event. (And, if you want this to
actually look like a ticker, play with some styles and add some color.)

23Testing Anonymous Type Equality

1

Testing Anonymous Type Equality
Anonymous type equality is defined very deliberately. If any two or more anonymous
types have the same order, number, and member declaratory type and name, the same
anonymous type class is defined. In this instance, it is permissible to use the referential
equality operator on these types. If any of the order, number, and member declarator type
and name is different, a different anonymous type definition is defined for each. And, of
course, testing referential integrity produces a compiler error.

NOTE

It is possible to use reflection to get type information about anonymous types, and you
might want to do this, occasionally, for anonymous types returned from methods.
However, the actual name of the anonymous type can vary between compilations, so
devising a way to use the class name probably has no reliable uses.

If you want to test member equality, use the Equals method (defined by all objects).
Anonymous types with the same order, type, and name, type, and value of member
declarators also produce the same hash; the hash is the basis for the equality test. Listing
1.13 provides some samples of anonymous types followed by equality tests and comments
indicating those that produce the same anonymous types and those that have member-
wise equality.

LISTING 1.13 Various Anonymous Types with Annotations

var audioBook = new {Artist=”Bob Dylan”,

Song=”I Shall Be Released”}; // anonymous type 1

var songBook1 = new {Artist=”Bob Dylan”,

Song=”I Shall Be Released”}; // also anonymous type 1

var songBook2 = new {Singer=”Bob Dylan”,

Song=”I Shall Be Released”}; // anonymous type 2

var audioBook1 = new {Song=”I Shall Be Released”,

Artist=”Bob Dylan”}; // anonymous type 3

audioBook.Equals(songBook1); // true everything the same

audioBook.Equals(songBook2); // first member declarators different

songBook1.Equals(songBook2); // member declarator-names differ

audioBook1.Equals(audioBook); // member declarators in different orders

The anonymous types audioBook and songBook1 produce the same anonymous type.
These are the only two that produce the same hash and, as a result, the Equals method
returns true. The other anonymous types are similar, but either the member declarators
are different—songBook1 uses the member declarator Artist and songBook2 uses Singer—
or the order of the declarators are different—referring to audioBook and audioBook1.

24 CHAPTER 1 Programming with Anonymous Types

Using Anonymous Types with LINQ Queries
The most significant attribute of anonymous types in conjunction with LINQ is that they
support hierarchical data shaping without writing all of the plumbing code or resorting to
SQL. Data shaping is roughly transforming data from one composition to another. LINQ
lets you do this with natural queries, and anonymous types give you a place to store the
results of these queries.

This whole book is about LINQ, so Listing 1.14 shows a couple of LINQ examples without
getting too far ahead in upcoming chapter material. Again, each example also has a brief
description.

LISTING 1.14 A Couple of Simple LINQ Queries to Play With Demonstrating Future Topics
Such as Sorting and Projections

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousTypeWithQuery

{

class Program

{

static void Main(string[] args)

{

var numbers = new int[] {1, 2, 3, 4, 5, 6, 7};

var all = from n in numbers orderby n descending select n;

foreach(var n in all)

Console.WriteLine(n);

var songs = new string[]{“Let it be”, “I shall be released”};

var newType = from song in songs select new {Title=song};

foreach(var s in newType)

Console.WriteLine(s.Title);

Console.ReadLine();

}

}

}

The first query—from n in numbers orderby n descending select n—sorts the integers
1 to 7 in reverse order and stuffs the results in the anonymous type all. The second
query—from song in songs select new {Title=song}—shapes the array of strings in

25Introducing Generic Anonymous Methods

1

songs to an enumerable collection of anonymous objects with a property Title. (The
second example takes an array of strings and shapes it into an array of objects with a well-
named property.)

Introducing Generic Anonymous Methods
For newer programmers, word reuse can be confusing. For example, anonymous methods
are unrelated to anonymous types except to the extent that it means the type of the
method is unnamed. Anonymous methods are covered in this section because they are
valuable and worth covering, but, for the most part, this section switches topics.

Anonymous methods behave like regular methods except that they are unnamed. They
were introduced as an alternative to defining delegates that did very simple tasks, where
full-blown methods amounted to more than just extra typing. Anonymous methods also
evolved further into Lambda Expressions, which are even shorter (terse) methods. Chapter 5,
“Understanding Lambda Expressions and Closures,” delves deeper into the evolution of
methods. For now, this section takes an introductory look at anonymous generic methods.

An anonymous method is like a regular method but uses the delegate keyword, and
doesn’t require a name, parameters, or return type. Listing 1.15 shows a regular method
(used as a delegate for the CancelKeyPress event, Ctrl+C in a console application) and an
anonymous delegate that performs the same role.

LISTING 1.15 A Regular Method and Anonymous Method Handling the CancelKeyPress Event
in a Console Application

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace AnonymousMethod

{

class Program

{

static void Main(string[] args)

{

// ctrl+c

Console.CancelKeyPress += new ConsoleCancelEventHandler

(Console_CancelKeyPress);

// anonymous cancel delegate

Console.CancelKeyPress +=

delegate

{

Console.WriteLine(“Anonymous Cancel pressed”);

};

26 CHAPTER 1 Programming with Anonymous Types

LISTING 1.15 Continued

Console.ReadLine();

}

static void Console_CancelKeyPress(object sender, ConsoleCancelEventArgs e)

{

Console.WriteLine(“Cancel pressed”);

}

}

}

TIP

To quickly stub out an event-handling method, type the object.eventname,
the += operator, and press the Tab key twice.

The regular method (used as a delegate) is named ConsoleCancelEventHandler. Although
the double-Tab trick generates these stubbed delegates for you, they are overkill for one-line
event handlers. The second statement that begins with the Console.CancelKeyPress +=
delegate demonstrates an anonymous method (delegate) that is equivalent to the longer
form of the method. Notice that because the parameters in the delegate aren’t used, they
are omitted from the anonymous delegate. You have the option of using the parameter
types and names if they are needed in the delegate.

Using Anonymous Generic Methods

Delegates are really just methods that are used (mostly) as event handlers. Generic
methods are those that have parameterized types. (Think replaceable data types.)
Therefore, anonymous generic delegates are anonymous methods that are associated with
replaceable parameterized types. A very useful type is Func<T> (and Func<T, T1, ... Tn>,
demonstrated in Listing 1.16). This generic delegate (defined in the System namespace)
can be assigned to delegates and anonymous delegates with varying return types and
parameters, which makes it a very flexible delegate holder.

LISTING 1.16 Demonstrating How to Use System.Func to Define an Essentially Nested
Implementation of the Factorial Function

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

27Introducing Generic Anonymous Methods

1

LISTING 1.16 Continued

namespace AnonymousGenericDelegate

{

class Program

{

static void Main(string[] args)

{

System.Func<long, long> Factorial =

delegate(long n)

{

if(n==1) return 1;

long result=1;

for(int i=2; i<=n; i++)

result *= i;

return result;

};

Console.WriteLine(Factorial(6));

Console.ReadLine();

}

}

}

For all intents and purposes, Factorial is a nested function. Listing 1.16 used Func<long,

long>, where the first long parameter represents the return type and the second is the para-
meter. Notice that the listing also used a named parameter for the anonymous delegate.

Implementing Nested Recursion

Now, you can have a little fun bending and twisting the Factorial function to use recur-
sion. The challenge is that the named delegate is not named until after the delegate defini-
tion—the name being Factorial. Hence, you can’t use the name in the anonymous
delegate itself, but you can make it work.

There is a class called StackFrame. StackFrame permits getting methods (and information
from the call stack) and you can use this class and reflection to invoke the anonymous
delegate recursively. (This code is obviously esoteric—referred to this as programmer
esoterrorism—but it is fun and demonstrates a lot of features of the framework in a little bit
of space, as shown in Listing 1.17.)

LISTING 1.17 Nested, Recursive Anonymous Generic Methods—as a Routine Practice

using System;

using System.Diagnostics;

using System.Collections.Generic;

using System.Linq;

28 CHAPTER 1 Programming with Anonymous Types

LISTING 1.17 Continued

using System.Text;

using System.Reflection;

namespace AnonymousGenericRecursiveDelegate

{

class Program

{

static void Main(string[] args)

{

Func<long, long> Factorial =

delegate(long n)

{

return n > 1 ?

n * (long)(new StackTrace()

.GetFrame(0).GetMethod().Invoke(null, new object[]{n-1}))

: n;

};

Console.WriteLine(Factorial(6));

Console.ReadLine();

}

}

}

Again, writing code like the Factorial delegate in Listing 1.17 is only fun for the writer,
but elements of it do have utility. For example, anonymous delegates like the Factorial
can be useful for one-time, simple event handling. Assigning behaviors to the Func<T>
delegate type effectively makes nested functions and reusable delegates that can be passed
as arguments, a very dynamic way to program. Getting the StackFrame can be a great way
to create a utility that tracks function calls during debugging—like writing the StackTrace
to the Debug window in a way that is useful to you—and reflection has many uses.

Reflection can be useful for dynamically loaded assemblies, as demonstrated by NUnit and
Visual Studio’s unit testing.

Summary
This chapter examined anonymous types in detail. Anonymous types are strong types
where the compiler does the work of figuring out the actual type and writing the class
implementation, if the anonymous type is a composite type.

As you see anonymous types used throughout the book for query results, remember
anonymous types are immutable, the same type is code generated if the member declara-
tory—field name—type, number, and order are identical.

