
Implementing a WCF Service
in the Real World

In the previous chapter, we created a basic WCF service. The WCF service we
created, HelloWorldService, has only one method, called GetMessage. Because
this is just an example, we implemented this WCF service in one layer only. Both the
service interface and implementation are all within one deployable component.

In this chapter and the next one, we will implement a WCF Service, which will be
called RealNorthwindService, to refl ect a real world solution. In this chapter we
will separate the service interface layer from the business logic layer, and in the next
chapter we will add a data access layer to the service.

In this chapter, we will create and test the WCF service by following these steps:

Create the project using a WCF Service Library template
Create the project using a WCF Service Application template
Create the Service Operation Contracts
Create the Data Contracts
Add a Product Entity project
Add a business logic layer project
Call the business logic layer from the service interface layer
Test the service

Why layering a service?
An important aspect of SOA design is that service boundaries should be explicit,
which means hiding all the details of the implementation behind the service
boundary. This includes revealing or dictating what particular technology was used.

•

•

•

•

•

•

•

•

Implementing a WCF Service in the Real World

[90]

Further more, inside the implementation of a service, the code responsible for the
data manipulation should be separated from the code responsible for the business
logic. So in the real world it is always a good practice to implement a WCF service
in three or more layers. The three layers are the service interface layer, the business
logic layer, and the data access layer.

Service interface layer: This layer will include the service contracts and
operation contracts that are used to defi ne the service interfaces that will be
exposed at the service boundary. Data contracts are also defi ned to pass in to
and out of the service. If any exception is expected to be thrown outside of the
service, then Fault contracts will also be defi ned at this layer.
Business logic layer: This layer will apply the actual business logic to the
service operations. It will check the preconditions of each operation, perform
business activities, and return any necessary results to the caller of the service.
Data access layer: This layer will take care of all of the tasks needed to
access the underlying databases. It will use a specifi c data adapter to query
and update the databases. This layer will handle connections to databases,
transaction processing, and concurrency controlling. Neither the service
interface layer nor the business logic layer needs to worry about these things.

Layering provides separation of concerns and better factoring of code, which gives
you better maintainability and the ability to split layers out into separate physical
tiers, for scalability. The data access code should be separated out into its own layer
that focuses on performing translation services between the databases and the
application domain. Services should be placed in a separate service layer that focuses
on performing translation services between the service-oriented external world and
the application domain.

The service interface layer will be compiled into a separate class assembly, and
hosted in a service host environment. The outside world will only know about and
have access to this layer. Whenever a request is received by the service interface
layer, the request will be dispatched to the business logic layer, and the business
logic layer will get the actual work done. If any database support is needed by the
business logic layer, it will always go through the data access layer.

Creating a new solution and project
using WCF templates
 We need to create a new solution for this example, and add a new WCF project to
this solution. This time we will use the built-in Visual Studio WCF templates for the
new project.

•

•

•

Chapter 5

[91]

Using the C# WCF service library template
 There are two built-in WCF service templates within Visual Studio 2008: Visual
Studio WCF Service Library and Visual Studio Service Application. In this section,
we will use the service library template, and in the next section, we will use the
service application template. Later, we will explain the differences between these
two templates and choose the template that we are going to use for this chapter.

Follow these steps to create the RealNorthwind solution and the project using
service library template:

1. Start Visual Studio 2008, select menu option File | New | Project…, and you
will see the New Project dialog box. Do not open the HelloWorld solution
from the previous chapter, as from this point onwards, we will create a
completely new solution and save it in a different location.

2. In the New Project window, specify Visual C# | WCF as the project type,
WCF Service Library as the project template, RealNorthwindService as the
(project) name, and RealNorthwind as the solution name. Make sure that the
checkbox Create directory for solution checkbox is selected.

Implementing a WCF Service in the Real World

[92]

3. Click the OK button, and the solution is created with a WCF project inside it.
The project already has a IService1.cs fi le to defi ne an service interface and
Service1.cs to implement the service. It also has an app.config fi le, which
we will cover shortly.

 Using the C# WCF service application
template
I nstead of using the Visual Studio WCF Service Library template to create our new
WCF project, we can also use the Visual Studio Service Application template to
create the new WCF project.

Because we have created the solution, we will add a new project using the Visual
Studio WCF Service Application template.

1. Right-click on the solution item in the Solution Explorer, select menu option
Add | New Project… from the context menu, and you will see the Add New
Project dialog box.

2. In the Add New Project window, specify Visual C# as the
project type, WCF Service Application as the project template,
RealNorthwindService2 as the (project) name, and leave the default location
of D:\SOAwithWCFandLINQ\Projects\RealNorthwind unchanged.

Chapter 5

[93]

3. Click the OK button and the new project will be added to the solution. The
project already has an IService1.cs fi le to defi ne a service interface, and
Service1.svc.cs to implement the service. It also has a Service1.svc
fi le, and a web.config fi le, which are used to host the new WCF service.
It has also had the necessary references added to the project such as
System.ServiceModel.

You can follow these steps to test this service:

 Change this new project RealNorthwindService2 to be the startup project
(right-click on it from the Solution Explorer, and select Set as Startup
Project). Then, run it (Ctrl+F5 or F5). You will see that it can now run. You
will see that an ASP.NET Development Server has been started, and a
browser is open listing all of the fi les under the RealNorthwindService2
project folder. Clicking on the Service1.svc fi le will open the Metadata page
of the WCF service in this project. This is the same as we had discussed in the
previous chapter for the HostDevServer project.
If you have pressed F5 in the previous step to run this project, you will see
a warning message box asking you if you want to enable debugging for the
WCF service. As we said earlier, you can choose enable debugging or just run
in non-debugging mode.

You may also have noticed that the WCF Service Host is started together with the
ASP.NET Development Server. This is actually another way of hosting a WCF
service in Visual Studio 2008. It has been started at this point because, within the
same solution, there is a WCF service project (RealNorthwindService) created using
the WCF Service Library template. We will cover more of this host in a later section.

So far, we have used two different Visual Studio WCF templates to create two
projects. The fi rst project, using C# WCF Service Library template, is a more
sophisticated one because this project is actually an application containing a WCF
service, a hosting application (WcfSvcHost), and a WCF Test Client. This means
that we don't need to write any other code to host it, and as soon as we have
implemented a service, we can use the built-in WCF Test Client to invoke it. This
makes it very convenient for WCF development.

•

•

Implementing a WCF Service in the Real World

[94]

The second project, using C# WCF Service Application template, is actually a
website. This is the hosting application of the WCF service, so you don't have to
create a separate hosting application for the WCF service. This is like a combination
of the HelloWorldService and the HostDevServer applications we created in the
previous chapter. As we have already covered them and you now have had a solid
understanding of these styles, we will not discuss them any more. But keep in mind
that you have this option, although in most cases it is better to keep the WCF service
as clean as possible, without any hosting functionalities attached to it.

To focus on the WCF service using the WCF Service Library template, we now need
to remove the project RealNorthwindService2 from the solution.

In the Solution Explorer, right-click on the RealNorthwindService2 project item, and
select Remove from the context menu. Then, you will see a warning message box.
Click the OK button in this message box, and the RealNorthwindService2 project
will be removed from the solution. Note that all the fi les of this project are still on
your hard drive. You will need to delete them using Windows Explorer.

Creating the service interface layer
In t he previous section, we created a WCF project using the WCF Service Library
template. In this section, we will create the service interface layer contracts.

Because two sample fi les have already been created for us, we will try to re-use them
as much as possible. Then, we will start customizing these two fi les to create the
service contracts.

Creating the service interfaces
To c reate the service interfaces, we need to open the IService1.cs fi le, and do
the following:

1. Change its namespace from RealNorthwindService to:
 MyWCFServices.RealNorthwindService

Chapter 5

[95]

2. Change the interface name from IService1 to IProductService. Don't be
worried if you see the warning message before the interface defi nition line, as
we will change the web.config fi le in one of the following steps.

3. Change the fi rst operation contract defi nition from this line:
 string GetData(int value);

To this line:
 Product GetProduct(int id);

4. Change the second operation contract defi nition from this line:
 CompositeType GetDataUsingDataContract(CompositeType composite);

To this line:
 bool UpdateProduct(Product product);

5. Change the fi le's name from IService1.cs to IProductService.cs.

With these changes, we have defi ned two service contracts. The fi rst one can be used
to get the product details for a specifi c product ID, while the second one can be used
to update a specifi c product. The product type, which we used to defi ne these service
contracts, is still not defi ned. We will defi ne it right after this section.

The content of the service interface for RealNorthwindService.ProductService
should look like this now:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;

namespace MyWCFServices.RealNorthwindService
{
 // NOTE: If you change the interface name "IService1" here, you
must also update the reference to "IService1" in App.config.
 [ServiceContract]
 public interface IProductService
 {
 [OperationContract]
 Product GetProduct(int id);

 [OperationContract]
 bool UpdateProduct(Product product);

 // TODO: Add your service operations here
 }
}

Implementing a WCF Service in the Real World

[96]

Thi s is not the whole content of the IProductService.cs fi le. The
bottom part of this fi le now should still have the class CompositeType,
which we will change to our Product type in the next section.

Creating the data contracts
Anot her important aspect of SOA design is that you shouldn't assume that the
consuming application supports a complex object model. A part of the service
boundary defi nition is the data contract defi nition for the complex types that will be
passed as operation parameters or return values.

For maximum interoperability and alignment with SOA principles, you should
not pass any .NET specifi c types such as DataSet or Exceptions across the service
boundary. You should stick to fairly simple data structure objects such as classes
with properties, and backing member fi elds. You can pass objects that have nested
complex types such as 'Customer with an Order collection'. However, you shouldn't
make any assumption about the consumer being able to support object-oriented
constructs such as inheritance, or base-classes for interoperable web services.

In our example, we will create a complex data type to represent a product
object. This data contract will have fi ve properties: ProductID, ProductName,
QuantityPerUnit, UnitPrice, and Discontinued. These will be used to
communicate with client applications. For example, a supplier may call the
web service to update the price of a particular product, or to mark a product
for discontinuation.

It is preferable to put data contracts in separate fi les within a separate assembly, but
to simplify our example, we will put the DataContract within the same fi le as the
service contract. So, we will modify the fi le IProductService.cs as follows:

1. Change the DataContract name from CompositeType to Product.
2. Change the fi elds from the following lines:
 bool boolValue = true;
 string stringValue = "Hello ";

 To these 7 lines:
 int productID;
 string productName;
 string quantityPerUnit;
 decimal unitPrice;
 bool discontinued;

Chapter 5

[97]

3. Delete the old BoolValue, and StringValue DataMember properties. Then,
for each of the above fi elds, add a DataMember property. For example, for
productID, we will have this DataMember property:

 [DataMember]
 public int ProductID
 {
 get { return productID; }
 set { productID = value; }
 }

A better way is to take advantage of the automatic property feature of C#, and add
the following ProductID DataMember without defi ning the productID fi eld:

[DataMember]
public int ProductID { get; set; }

To save some space, we will use the latter format. So, we need to delete all of those
fi eld defi nitions, and add an automatic property for each fi eld, with the fi rst
letter capitalized.

The data contract part of the fi nished service contract fi le IProductService.cs
should now look like this:

[Da taContract]
public class Product
{
 [DataMember]
 public int ProductID { get; set; }
 [DataMember]
 public string ProductName { get; set; }
 [DataMember]
 public string QuantityPerUnit { get; set; }
 [DataMember]
 public decimal UnitPrice { get; set; }
 [DataMember]
 public bool Discontinued { get; set; }
}

Implementing a WCF Service in the Real World

[98]

Implementing the service contracts
To i mplement the two service interfaces that we defi ned in the previous section,
open the Service1.cs fi le and do the following:

1. Change its namespace from RealNorthwindService to MyWCFServices.
RealNorthwindService.

2. Change the class name from Service1 to ProductService. Make it inherit
from the IProductService interface, instead of IService1. The class
defi nition line should be like this:

 public class ProductService : IProductService

3. Delete the GetData and GetDataUsingDataContract methods
4. Add the following method, to get a product:
 public Product GetProduct(int id)
 {
 // TODO: call business logic layer to retrieve product
 Product product = new Product();
 product.ProductID = id;
 product.ProductName = "fake product name from service layer";
 product.UnitPrice = (decimal)10.0;
 return product;
 }

In this method, we created a fake product and returned it to the client.
Later, we will remove the hard-coded product from this method, and call
the business logic to get the real product.

5. Add the following method to update a product:
 public bool UpdateProduct(Product product)
 {
 // TODO: call business logic layer to update product
 if (product.UnitPrice <= 0)
 return false;
 else
 return true;
 }

Also, in this method, we don't update anything. Instead, we always return
true if a valid price is passed in. In one of the following sections, we will
implement the business logic to update the product and apply some business
logics to the update.

Chapter 5

[99]

6. Change the fi le's name from Service1.cs to ProductService.cs. The
content of the ProductService.cs fi le should be like this:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Runtime.Serialization;
 using System.ServiceModel;
 using System.Text;
 namespace MyWCFServices.RealNorthwindService
 {
 // NOTE: If you change the class name "Service1" here,
 you must also update the reference to "Service1" in App.config.
 public class ProductService : IProductService
 {
 public Product GetProduct(int id)
 {
 // TODO: call business logic layer to retrieve product
 Product product = new Product();
 product.ProductID = id;
 product.ProductName = "fake product name
 from service layer";
 product.UnitPrice = (decimal)10;
 return product;
 }
 public bool UpdateProduct(Product product)
 {
 // TODO: call business logic layer to update product
 if (product.UnitPrice <= 0)
 return false;
 else
 return true;
 }
 }
 }

Modifying the app.config file
 Because we have changed the service name, we have to make the appropriate
changes to the confi guration fi le.

Implementing a WCF Service in the Real World

[100]

Follow these steps to change the confi guration fi le:

1. Open app.config fi le from the Solution Explorer.
2. Change the RealNorthwindService string to MyWCFServices.

RealNorthwindService. This is for the namespace change.
3. Change the Service1 string to ProductService. This is for the actual

service name change.
4. Change the service address port from 8731 to 8080. This is to prepare for the

client application.
5. You can also change the Design_Time_Addresses to whatever address you

want, or delete this part from the service, baseAddress. This can be used to
test your service locally.

The content of the app.config fi le should now look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.web>
 <compilation debug="true" />
 </system.web>
 <!-- When deploying the service library project, the content of
 the config file must be added to the host's app.config file.
 System.Configuration does not support config files for
 libraries. -->
 <system.serviceModel>
 <services>
 <service name="MyWCFServices.RealNorthwindService.
 ProductService" behaviorConfiguration="MyWCFServices.
 RealNorthwindService.ProductServiceBehavior">
 <host>
 <baseAddresses>
 <add baseAddress = "http://localhost:8080/Design_Time_
 Addresses/MyWCFServices/RealNorthwindService/
 ProductService/" />
 </baseAddresses>
 </host>
 <!-- Service Endpoints -->
 <!-- Unless fully qualified, address is relative to base
 address supplied above -->
 <endpoint address ="" binding="wsHttpBinding"
 contract="MyWCFServices.RealNorthwindService.IProductService">
 <!-- Upon deployment, the following identity element should
 be removed or replaced to reflect the identity under which
 the deployed service runs. If removed, WCF will infer an
 appropriate identity automatically. -->

Chapter 5

[101]

 <identity>
 <dns value="localhost"/>
 </identity>
 </endpoint>
 <!-- Metadata Endpoints -->
 <!-- The Metadata Exchange endpoint is used by the service
 to describe itself to clients. -->
 <!-- This endpoint does not use a secure binding and should be
 secured or removed before deployment -->
 <endpoint address="mex" binding="mexHttpBinding" contract=
 "IMetadataExchange"/>
 </service>
 </services>
 <behaviors>
 <serviceBehaviors>
 <behavior name="MyWCFServices.RealNorthwindService.
 ProductServiceBehavior">
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the metadata
 endpoint above before deployment -->
 <serviceMetadata httpGetEnabled="True"/>
 <!-- To receive exception details in faults for debugging
 purposes, set the value below to true. Set to false before
 deployment to avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults="False" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 </system.serviceModel>
</configuration>

Testing the service using WCF Test Client
 Because we are using the WCF Service Library template in this example, we are now
ready to test this web service. As we pointed out when creating this project, this
service will be hosted in the Visual Studio 2008 WCF Service Host environment.

Implementing a WCF Service in the Real World

[102]

This is a new feature of Visual Studio 2008; if you are using Visual Studio
2005, you won't have this built-in functionality.

To start the service, press F5 or Ctrl+F5. The WcfSvcHost will be started and the
WCF Test Client is also started. This is a Visual Studio 2008 built-in test client for
WCF Service Library projects.

In order to run the WCF Test Client, you have to log in to your machine
as a local administrator.

From this WCF Test Client, we can double-click on an operation to test it. First, let us
test the GetProduct operation.

1. In the left panel of the client, double-click on the GetProduct operation; the
GetProduct Request will be shown on the right-side panel.

2. In this Request panel, specify an integer for the product ID, and click the
Invoke button to let the client call the service. You may get a dialog box to
warn you about the security of sending information over the network.
Click the OK button to acknowledge this warning (you can check the
'In the future, do not show this message' option, so that it won't be
displayed again).

Chapter 5

[103]

Now the message Invoking Service… will be displayed in the status bar, as the
client is trying to connect to the server. It may take a while for this initial connection
to be made, as several things need to be done in the background. On ce the
connection has been established, a channel will be created and the client will call the
service to perform the requested operation. Once the operation has completed on the
server side, the response package will be sent back to the client, and the WCF Test
Client will display this response in the bottom panel.

If you have started the test client in the debugging mode (by pressing F5), you can set
a breakpoint at a line inside the GetProduct method in the RealNorthwindService.
cs fi le, and when the Invoke button is clicked, the breakpoint will be hit so that you
can debug the service as we explained earlier.

Note that the response is always the same, no matter what product ID you use to
retrieve the product. Specifi cally, the product name is hard-coded, as shown in
the diagram. Moreover, from the client response panel, we can see that several
properties of the Product object have been assigned default values.

Implementing a WCF Service in the Real World

[104]

Als o, because the product ID is an integer value from the WCF Test Client, you can
only enter an integer for it. If a non-integer value is entered, when you click the
Invoke button, you will get an error message box to warn you that you have entered
the wrong type.

Now let's test the operation, UpdateProduct.

Double-click the UpdateProduct operation in the left panel, and
UpdateProduct will be shown in the right-side panel, in a new tab.
Enter a decimal value for the UnitPrice parameter, then click the Invoke
button to test it. Depending on the value you entered in the UnitPrice
column, you will get a True or False response package back.

•

•

Chapter 5

[105]

The R equest/Response packages are displayed in grids by default, but you have
the option of displaying them in the XML format. Just select the XML tab from the
bottom of the right-hand side panel, and you will see the XML formatted Request/
Response packages. From these XML strings, you will discover that they are
SOAP messages.

Besides testing operations, you can also look at the confi guration settings of the
web service. Just double-click on Confi g File from the left-side panel and the
confi guration fi le will be displayed in the right-side panel. This will show you the
bindings for the service, the addresses of the service, and the contract for the service.

What you see here for the confi guration fi le is not an exact image of the
actual confi guration fi le. It hides some information, such as debugging
mode and service behavior, and includes some additional information on
reliable sessions and compression mode.

Implementing a WCF Service in the Real World

[106]

If you are satisfi ed with the test results, just close the WCF Test Client, and you will
go back to Visual Studio IDE. Note that as soon as you close the client, the WCF
Service Host is stopped. This is different from hosting a service inside the ASP.NET
Development Server, where after you close the client, the ASP.NET Development
Server still does not stop.

Testin g the service using our own client
It is v ery convenient to test a WCF service using the built-in WCF Test Client, but
sometimes, it is desirable to test a WCF service using your own test client. The
built-in WCF Test Client is limited to only simple WCF services. So for complex
WCF services, we have to create our own test client. For this purpose, we can
use the methods we learned earlier, to host the WCF service in IIS, the ASP.NET
Development Server, or a managed .NET application, and create a test client to test
the service.

In addition to the previous methods we learned, we can also use the built-in WCF
Service Host to host the WCF service. So we don't need to create a host application,
but just need to create a client. In this section, we will use this hosting method, to
save us some time.

Chapter 5

[107]

First, let us fi nd a way to get the Metadata for the service. From the Visual Studio
2008 built-in WCF Test Client, you can't examine the WSDL of the service, although
the client itself must have used the WSDL to communicate with the service. To
see the WSDL outside of the WCF Service Test Client, just copy the address of the
service from the confi guration fi le and paste it into a web browser. In our example,
the address of the service is: http://localhost:8080/Design_Time_Addresses/
MyWCFServices/RealNorthwindService/ProductService/. So, copy and paste
this address to a web browser, and we will see the WSDL languages of the service,
just as we have seen many times before.

To get the Metadata for the service, the service host application must
run. The easiest way to start the RealNorthwindService in the WCF
Service Host is to start the WCF Test Client and leave it running.

Implementing a WCF Service in the Real World

[108]

Now that we know how to get the Metadata for our service, we can start building
the test client. We can leave the host application running, and manually generate the
proxy classes using the same method that we used earlier. But this time we will let
Visual Studio do it for us. So you can close the WCF Test Client for now.

Follow these steps to build your own client to test the WCF service:

1. Add a new Console Application project to the RealNorthwind solution. Let's
call it RealNorthwindClient.

2. Add a reference to the WCF service. In the Visual Studio Solution Explorer,
right-click on the RealNorthwindClient project, select Add Service
Reference … from the context menu, and you will see the Add Service
Reference dialog box.

3. In the Add Service Reference dialog box, type the following address into the
Address box, and then click the Go button to connect to the service:
http://localhost:8080/Design_Time_Addresses/MyWCFServices/
RealNorthwindService/ProductService/

Also, you can simply click the Discover button (or click on the little arrow next
to the Discover button, and select Services in Solution) to fi nd this service.

Chapter 5

[109]

In order to connect to or discover a service in the same solution, you don't
have to start the host application for the service. The WCF Service Host
will be automatically started for this purpose. However, if it is not started
in advance, it may take a while for the Add Service Reference window to
download the required Metadata information for the service.

The ProductService should now be listed on the left-hand side of the win-
dow. You can expand it and select the service contract to view its details.

4. Next, let's change the namespace of this service from ServiceReference1 to
ProductServiceRef. This will make the reference meaningful in the code.

5. If y ou want to make this client run under .NET 2.0, click the Advanced
button in the Add Service Reference window, and in the Service Reference
Settings pop-up dialog box, click the Add Web Reference button. This will
cause the proxy code will be generated based on the .NET 2.0 web services.

In this example, we won't do this. So, click the Cancel button to discard
these changes.

Implementing a WCF Service in the Real World

[110]

6. Now click the OK button in the Add Service Reference dialog box to add the
service reference. You will see that a new folder, named ProductServiceRef,
is created under Service References in the Solution Explorer for the
RealNorthwindClient project. This folder contains lots of fi les, including the
WSDL fi le, the service map, and the actual proxy code. If you can't see them,
click Show All Files in the Solution Explorer.

A new fi le, App.config, is also added to the project, as well as
several WCF-related references such as System.ServiceModel and
System.Runtime.Serialization.
At this point, the proxy code to connect to the WCF service and the required
confi guration fi le have both been created and added to the project for us,
without us having to enter a single line of code. What we need to do next is to
write just a few lines of code to call this service.

Chapter 5

[111]

Just as we did earlier, we will modify Program.cs to call the WCF service.

1. First, open Program.cs fi le, and add the following using line to the fi le:
using RealNorthwindClient.ProductServiceRef;

2. Then, inside the Main method, add the following line of code to create a
client object:

 ProductServiceClient client = new ProductServiceClient();

3. Finally, add the following lines to the fi le, to call the WCF service to get and
update a product:

 Product product = client.GetProduct(23);
 product.UnitPrice = (decimal)20.0;
 bool result = client.UpdateProduct(product);

The content of the Program.cs fi le is:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RealNorthwindClient.ProductServiceRef;

namespace RealNorthwindClient
{
 class Program
 {
 static void Main(string[] args)
 {
 ProductServiceClient client = new ProductServiceClient();

 Product product = client.GetProduct(23);
 Console.WriteLine("product name is " +
 product.ProductName);
 Console.WriteLine("product price is " +
 product.UnitPrice.ToString());

 product.UnitPrice = (decimal)20.0;
 bool result = client.UpdateProduct(product);
 Console.WriteLine("Update result is " +
 result.ToString());
 }
 }
}

Implementing a WCF Service in the Real World

[112]

Now you can run the client application to test the service. Remember that you need
to set RealNorthwindClient to be the startup project before pressing F5 or Ctrl+F5.

If you want to start it in debugging mode (F5), you need to add a Console.
ReadLine(); statement to the end of the program, so that you can see the output of
the program. The WCF Service Host application will be started automatically before
the client is started (but the WCF Test Client won't be started).

If you want to start the client application in non-debugging mode (Ctrl+F5), you
need to start the WCF Service Host application (and the WCF Test Client application)
in advance. You can start it from another Visual Studio IDE instance, or you can
set the RealNorthwindService as the startup project, start it in the non-debugging
mode (Ctrl+F5), leave it running, and then change RealNorthwindClient to be the
startup project, and start it in non-debugging mode. Also, you can set the solution to
start with multiple projects with the RealNorthwindService as the fi rst project to be
run, and RealNorthwindClient as the second project to be run.

The output of this client program is as shown in the following fi gure:

Adding a business logic layer
Until now, t he web service has contained only one layer. In this section, we will add
a business logic layer, and defi ne some business rules in this layer.

Chapter 5

[113]

Adding the product entity project
Before we ad d the business logic layer, we need to add a project for business entities.
The business entities project will hold of all business entity object defi nitions such
as products, customers, and orders. These entities will be used across the business
logic layer, the data access layer and the service layer. They will be very similar to
the data contracts we defi ned in the previous section, but will not be seen outside
of the service. The Product entity will have the same properties as the product
contract data, plus some extra properties such as UnitsInStock and ReorderLevel.
These properties will be used internally, and shared by all layers of the service. For
example, when an order is placed, the UnitsInStock should be updated as well.
Also, if the updated UnitsInStock is less than the ReorderLevel, an event should
be raised to trigger the re-ordering process.

The business entities by themselves do not act as a layer. They are just pure C#
classes representing internal data within the service implementations. There is no
logic inside these entities. Also, in our example these entities are very similar to the
data contracts (with only two extra fi elds in the entity class), but in reality the entity
classes could be very different from the data contracts, from property names and
property types, to data structures.

As with the data contracts, the business entities' classes should be in their own
assembly. So, we fi rst need to create a project for them. Just add a new C# class
library, RealNorthwindEntities, to the Solution. Then, rename the Class1.cs to
ProductEntity.cs, and modify it as follows:

1. Change its namespace from RealNorthwindEntities to MyWCFServices.
RealNorthwindEntities

2. Change the class name from Class1 to ProductEntity, if it hasn't been
changed already

3. Add the following properties to this class:
ProductID, ProductName, QuantityPerUnit, UnitPrice,
Discontinued, UnitsInStock, UnitsOnOrder, ReorderLevel

Five of the above properties are also in the Product service data contract.
The last three properties are for use inside the service implementations.
Actually, we will use UnitsOnOrder to trigger business logic when
updating a product, and update UnitsInStock and ReorderLevel to
trigger business logic when saving an order (inside this book, we will not
create a service for saving an order, but we assume that this is a required
operation and will be implemented later).

Implementing a WCF Service in the Real World

[114]

 The following is the code list of the ProductEntity class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyWCFServices.RealNorthwindEntities
{
 public class ProductEntity
 {
 public int ProductID { get; set; }
 public string ProductName { get; set; }
 public string QuantityPerUnit { get; set; }
 public decimal UnitPrice { get; set; }
 public int UnitsInStock { get; set; }
 public int ReorderLevel { get; set; }
 public int UnitsOnOrder { get; set; }
 public bool Discontinued { get; set; }
 }
}

Adding the business logic project
 Next, let us create the business logic layer project. Again, we just need to add a
new C# class library project, RealNorthwindLogic, to the solution. So, rename the
Class1.cs to ProductLogic.cs, and then modify it as follows:

1. Change its namespace from RealNorthwindLogic to MyWCFServices.
RealNorthwindLogic

2. Change the class name from Class1 to ProductLogic, if it hasn't
been changed

3. Add a reference to the project RealNorthwindEntities, as shown in the
following Add Reference image:

Chapter 5

[115]

Now, we need to add some code to the ProductLogic class.

1. Add the following using line:
 using MyWCFServices.RealNorthwindEntities;

2. Add the method GetProduct. It should look like this:
 public ProductEntity GetProduct(int id)
 {
 // TODO: call data access layer to retrieve product
 ProductEntity p = new ProductEntity();
 p.ProductID = id;
 p.ProductName = "fake product name from business logic layer";
 p.UnitPrice = (decimal)20.00;
 return p;

 }

In this method, we create a ProductEntity object, assign values to
some of its properties, and return it to the caller. Everything is still
hard-coded so far.

We hard code the product name as "fake product name from business
logic layer", so that we know this is a different product from the one
returned directly from the service layer.

3. Add the method UpdateProduct, as follows:
 public bool UpdateProduct(ProductEntity product)
 {
 // TODO: call data access layer to update product
 // first check to see if it is a valid price
 if (product.UnitPrice <= 0)
 return false;
 // ProductName can't be empty
 else if (product.ProductName == null || product.ProductName.
 Length == 0)
 return false;
 // QuantityPerUnit can't be empty
 else if (product.QuantityPerUnit == null || product.
 QuantityPerUnit.Length == 0)
 return false;
 // then validate other properties
 else
 {

Implementing a WCF Service in the Real World

[116]

 ProductEntity productInDB = GetProduct(product.ProductID);
 // invalid product to update
 if (productInDB == null)
 return false;
 // a product can't be discontinued if there are
 non-fulfilled orders
 if (product.Discontinued == true && productInDB.
 UnitsOnOrder > 0)
 return false;
 else
 return true;
 }
 }

4. Add test logic to the GetProduct method

We still haven't updated anything in a database, but this time, we have
added several pieces of logic to the UpdateProduct method. First, we check
the validity of the UnitPrice property, and return false if it is not a valid
one. We then check the product name and quantity per unit properties, to
make sure they are not empty. We then try to retrieve the product, to see if it
is a valid product to update. We also added a check to make sure that a
supplier can't discontinue a product if there are unfulfi lled orders for this
product. However, at this stage, we can't truly enforce this logic, because
when we check the UnitsOnOrder property of a product, it is always 0 as we
didn't assign a value to it in the GetProduct method. For test purposes, we
can change the GetProduct method to include the following line of code:

 if(id > 50) p.UnitsOnOrder = 30;

Now, when we test the service, we can select a product with an ID that is
greater than 50, and try to update its Discontinued property to see what
result we will get.

A fter you put all of this together, the content of the ProductLogic.cs fi le should be
as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using MyWCFServices.RealNorthwindEntities;
using MyWCFServices.RealNorthwindDAL;

namespace MyWCFServices.RealNorthwindLogic
{
 public class ProductLogic
 {

Chapter 5

[117]

 public ProductEntity GetProduct(int id)
 {
 // TODO: call data access layer to retrieve product
 ProductEntity p = new ProductEntity();
 p.ProductID = id;
 p.ProductName =
 "fake product name from business logic layer";
 //p.UnitPrice = (decimal)20.0;
 if(id > 50) p.UnitsOnOrder = 30;
 return p;
 }

 public bool UpdateProduct(ProductEntity product)
 {
 // TODO: call data access layer to update product
 // first check to see if it is a valid price
 if (product.UnitPrice <= 0)
 return false;
 // ProductName can't be empty
 else if (product.ProductName == null || product.
 ProductName.Length == 0)
 return false;
 // QuantityPerUnit can't be empty
 else if (product.QuantityPerUnit == null || product.
 QuantityPerUnit.Length == 0)
 return false;
 // then validate other properties
 else
 {
 ProductEntity productInDB =
 GetProduct(product.ProductID);
 // invalid product to update
 if (productInDB == null)
 return false;
 // a product can't be discontinued if there are
 non-fulfilled orders
 else if (product.Discontinued == true && productInDB.
 UnitsOnOrder > 0)
 return false;
 else
 return true;
 }
 }
 }
}

Implementing a WCF Service in the Real World

[118]

Calling the business logic layer from the
service interface layer
W e now have the business logic layer ready, and can modify the service contracts to
call this layer, so that we can enforce some business logic.

First, we want to make it very clear that we are going to change the service
implementations, and not the interfaces. So we will only change the
ProductService.cs fi le.

We will not touch the fi le IProductService.cs. All of the existing clients
(if there are any) that are referencing our service will not notice that we are changing
the implementation.

Follow these steps to customize the service interface layer:

1. Add a reference to the business logic layer.
In order to call a method inside the business logic layer, we need to add a
reference to the assembly that the business logic is included in. We will also
use the ProductEntity class. So we need a reference to the RealNorthwind-
Entities as well.
To add a reference, from the Solution Explorer, right-click on the project
RealNorthwindService, select Add Reference … from the context menu, and
select RealNorthwindLogic from the Projects tab. Also, select RealNorth-
windEntities as we will need a reference to the ProductEntity inside it.
Just hold down the Ctrl key while you are selecting multiple projects. Click
the OK button to add references to the selected projects.

Chapter 5

[119]

2. Now we have added two references. We can add the following two using
statements to the ProductService.cs fi le so that we don't need to type the
full names for their classes.

 using MyWCFServices.RealNorthwindEntities;
 using MyWCFServices.RealNorthwindLogic;

3 . Now, inside the GetProduct method, we can use the following statements to
get the product from our business logic layer:

 ProductLogic productLogic = new ProductLogic();
 ProductEntity product = productLogic.GetProduct(id);

4. However, we cannot return this product back to the caller, because this
product is of the type ProductEntity, which is not the type that the caller is
expecting. The caller is expecting a return value of the type Product, which is
a data contract defi ned within the service interface. We need to translate this
ProductEntity object to a Product object. To do this, we add the following
new method to the ProductService class:

 private void TranslateProductEntityToProductContractData(
 ProductEntity productEntity,
 Product product)
 {
 product.ProductID = productEntity.ProductID;
 product.ProductName = productEntity.ProductName;
 product.QuantityPerUnit = productEntity.QuantityPerUnit;
 product.UnitPrice = productEntity.UnitPrice;
 product.Discontinued = productEntity.Discontinued;
 }

Inside this translation method, we copy all of the properties from the
ProductEntity object to the service contract data object, but not the last
three properties—UnitsInStock, UnitsOnOrder, and ReorderLevel. These
three properties are used only inside the service implementations. Outside
callers cannot see them at all.
T he GetProduct method should now look like this:

 public Product GetProduct(int id)
 {
 ProductLogic productLogic = new ProductLogic();
 ProductEntity productEntity = productLogic.GetProduct(id);
 Product product = new Product();
 TranslateProductEntityToProductContractData
 (productEntity, product);
 return product;
 }

Implementing a WCF Service in the Real World

[120]

We can modify the UpdateProduct method in the same way, making it
like this:

 public bool UpdateProduct(Product product)
 {
 ProductLogic productLogic = new ProductLogic();
 ProductEntity productEntity = new ProductEntity();
 TranslateProductContractDataToProductEntity(
 product, productEntity);

 return productLogic.UpdateProduct(productEntity);
 }

5. Note that we have to create a new method to translate a product contract
data object to a ProductEntity object. In translation, we leave the three
extra properties unassigned in the ProductEntity object, because we
know a supplier won't update these properties. Also, we have to create a
ProductLogic variable in both the methods, so that we can make it a
class member:

 ProductLogic productLogic = new ProductLogic();

The fi nal content of the ProductService.cs fi le is as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.Text;
using MyWCFServices.RealNorthwindEntities;
using MyWCFServices.RealNorthwindLogic;

namespace MyWCFServices.RealNorthwindService
{
 // NOTE: If you change the class name "Service1" here, you must
 also update the reference to "Service1" in App.config.
 public class ProductService : IProductService
 {
 ProductLogic productLogic = new ProductLogic();

 public Product GetProduct(int id)
 {
 /*
 // TODO: call business logic layer to retrieve product
 Product product = new Product();
 product.ProductID = id;

Chapter 5

[121]

 product.ProductName =
 "fake product name from service layer";
 product.UnitPrice = (decimal)10.0;
 */
 ProductEntity productEntity = productLogic.GetProduct(id);
 Product product = new Product();
 TranslateProductEntityToProductContractData(
 productEntity, product);

 return product;
 }
 public bool UpdateProduct(Product product)
 {
 /*
 // TODO: call business logic layer to update product
 if (product.UnitPrice <= 0)
 return false;
 else
 return true;
 */

 ProductEntity productEntity = new ProductEntity();
 TranslateProductContractDataToProductEntity(
 product, productEntity);

 return productLogic.UpdateProduct(productEntity);
 }

 private void TranslateProductEntityToProductContractData(
 ProductEntity productEntity,
 Product product)
 {
 product.ProductID = productEntity.ProductID;
 product.ProductName = productEntity.ProductName;
 product.QuantityPerUnit = productEntity.QuantityPerUnit;
 product.UnitPrice = productEntity.UnitPrice;
 product.Discontinued = productEntity.Discontinued;
 }

 private void TranslateProductContractDataToProductEntity(
 Product product,
 ProductEntity productEntity)
 {
 productEntity.ProductID = product.ProductID;
 productEntity.ProductName = product.ProductName;
 productEntity.QuantityPerUnit = product.QuantityPerUnit;
 productEntity.UnitPrice = product.UnitPrice;
 productEntity.Discontinued = product.Discontinued;
 }
 }
}

Implementing a WCF Service in the Real World

[122]

Testing the WCF service with a business logic
layer
W e can now compile and test the new service with a business logic layer. We will use
the WCF Test Client to simplify the process.

1. Make the project RealNorthwindService the startup project
2. Start the WCF Service Host application and WCF Service Test Client, by

pressing F5 or Ctrl+F5
3. In the WCF Service Test Client, double-click on the GetProduct operation, to

bring up the GetProduct test screen
4. Enter a value of 56 for the ID fi eld and then click the Invoke button

You will see that this time the product is returned from the business logic
layer, instead of the service layer. Also, note that the UnitsOnOrder property
is not displayed as it is not part of the service contract data type. However,
we know that a product has a property UnitsOnOrder, and we will actually
use this for our next test.

Chapter 5

[123]

Now, let us try to update a product.

1. In the WCF Service Test Client, double-click on the UpdateProduct operation
to bring up the UpdateProduct test screen.

2. Enter -10 as the price, and click the Invoke button. You will see that the
Response result is False.

3 . Enter a valid price, say 25.60, a name, and a quantity per unit, leave the
Discontinued property set to False, and then click the Invoke button. You
will see that the Response result is now True.

4. Change the Discontinued value from False to True, and click the Invoke
button again. The Response result is still True. This is because we didn't
change the product ID, and it has defaulted to 0.

5. Change the product ID to 51, leave the Discontinued value as True and
product price as 25.60, and click the Invoke button again. This time, you will
see that the Response result is False. This is because the business logic layer
has checked the UnitsOnOrder and Discontinued properties, and didn't
allow us to make the update.

Implementing a WCF Service in the Real World

[124]

Summary
In this chapter, we have created a real world WCF service that has a service contract
layer, and a business logic layer. The key points in this chapter include:

WCF Services should have explicit boundaries
The WCF Service Application template can be used to create WCF services
with a hosting web site created within the project
The WCF Service Library template can be used to create WCF services that
will be hosted by the WCF Service Host, and these can be tested using the
WCF service Test Client
The service interface layer should contain only the service contracts, such as
the operation contracts, and data contracts
The business logic layer should contain the implementation of the service
The business entities represent the internal data of the service shared by all of
the layers of the service, and they should not be exposed to the clients

•

•

•

•

•

•

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

