Tips, tricks and formulae on ratio and proportion

Ratio

• Ratio is comparison of two numbers, to find out how many times one number is greater than (or less than) the other number. It is to express one number as a fraction of other.

Ratio of two quantities a and b in same units, is the fraction $\frac{a}{b}$, where $b \neq 0$.

It is represented as a : b, where a (Numerator) is called as an antecedent and b (Denominator) is called as a consequent.

Multiplication or division of each term of a ratio by a constant does not affect the ratio.

Proportion

- Proportion is a special form of algebra equation, is used to compare ratios or make equivalent fractions.
 The equality of two ratios is called as proportion, ^a/_b = ^c/_d which is represented as, *a* : *b* :: *c* : *d* a and d are called Extreme terms, b and c are called mean terms.
- Direct and Inverse proportion,
 - I. We say that a is directly proportional to b, $a \propto b$; if a = kb for some constant k
 - II. We say that a is inversely proportional to b, $a \propto \frac{1}{b}$; if $a = \frac{k}{b}$ for some constant k,

Things to remember

- Compounded ratio of (a: b), (c: d) is (ac: bd), It is the ratio of product of first terms in every ratio to the product of second term in every ratio.
- For a ratio of a : b,
 - ✓ Duplicate ratio of a : b = a^2 : b^2
 - ✓ Sub-duplicate ratio of a: b = \sqrt{a} : \sqrt{b}
 - ✓ Triplicate ratio of a: b = a^3 : b^3
 - ✓ Sub-triplicate ratio of a: b = $\sqrt[3]{a}$: $\sqrt[3]{b}$
 - ✓ Reciprocal of a ratio a: b = b : a

• If a, b, c and d are in proportion, $\frac{a}{b} = \frac{c}{d}$, a:b::c:d then,

Product of extreme terms = Product of mean terms, i.e. ad = bc.

- For a proportion of *a*:*b*::*c*:*d*,
 - ✓ d is the fourth proportional of a, b, c
 - ✓ c is called third proportional to a, b
 - ✓ Mean proportional between a and b is \sqrt{ab}
 - ✓ Invertendo of $\frac{a}{b} = \frac{c}{d}$ is $\frac{b}{a} = \frac{d}{c}$
 - ✓ Alternendo of $\frac{a}{b} = \frac{c}{d}$ is $\frac{a}{c} = \frac{b}{d}$
 - ✓ Componendo of $\frac{a}{b} = \frac{c}{d}$ is $\frac{(a+b)}{b} = \frac{(c+d)}{d}$
 - ✓ Dividendo of $\frac{a}{b} = \frac{c}{d}$ is $\frac{(a-b)}{b} = \frac{(c-d)}{d}$
 - ✓ Componendo and Dividendo of $\frac{a}{b} = \frac{c}{d}$ is $\frac{(a+b)}{(a-b)} = \frac{(c+d)}{(c-d)}$
- If $\frac{a}{b} = \frac{c}{d} = k$, then $k = \frac{(a+b)}{(c+d)}$

Sol:

 $\frac{a}{b} = \frac{c}{d} = k$ $\Rightarrow \frac{a}{b} = k, \frac{c}{d} = k,$

Write a in terms of b and c in terms of d

$$\Rightarrow a = kb, c = kd$$
,

Substitute the above values of a and b in $k = \frac{(a+b)}{(c+d)}$ and verify,

$$\Rightarrow k = \frac{(a+b)}{(c+d)} = \frac{(kb+kd)}{(b+d)} = \frac{k(b+d)}{(b+d)} = k$$

Therefore, for $\frac{a}{b} = \frac{c}{d} = k$, then $k = \frac{(a+b)}{(c+d)}$

• The ratio $\frac{a}{b} > 1$ is called as ratio of greater inequality,

$$\frac{(a+k)}{(b+k)} > \frac{a}{b} \text{ and } \frac{(a-k)}{(b-k)} > \frac{a}{b}, \text{ for } k > 0$$

If the ratio
$$\frac{a}{b} < 1$$
, then

$$\frac{(a+k)}{(b+k)} < \frac{a}{b}$$
 and $\frac{(a-k)}{(b-k)} < \frac{a}{b}$, for K>0

Formulae to remember

1. If a, b, c and d are in proportion then,

Product of extreme terms = Product of mean terms, i.e. ad = bc.

2. If
$$\frac{a}{b} = \frac{c}{d} = k$$
, then $k = \frac{(a+b)}{(c+d)}$

Model questions

- A quantity q divided in the ratio of a : b, then each part of the quantity is
 - I. The first part is $\frac{a}{(a+b)} * q$
 - II. The second part is $\frac{b}{(a+b)} * q$
- If a number n is added to a ratio a : b such that the ratio becomes p : q, then $n = \frac{(aq bp)}{(p-q)}$

Sol:

The number n is added to the ratio a : b

$$\Rightarrow \frac{a+n}{b+n} = \frac{p}{q}$$
$$\Rightarrow q(a+n) = p(b+n)$$
$$\Rightarrow qa+qn = pb+pn$$
$$\Rightarrow qn-pn = pb-qa$$
$$\Rightarrow n(q-p) = pb-qa$$
$$\Rightarrow n = \frac{(pb-qa)}{(q-p)}$$

Therefore, the number n is $\frac{(pb-qa)}{(q-p)}$

• If a : b = x : y and b : c = p : q, then a : b : c = px : py : yq

Sol:

a:b=x:y and b:c=p:q

 $\frac{a}{b} = \frac{x}{y}$, write a in terms of b, which is $\Rightarrow a = b * \frac{x}{y}$ $\frac{b}{c} = \frac{p}{q}$, write c in terms of b, which is $\Rightarrow c = b * \frac{q}{p}$

Now, the ratio of a : b : c = $\frac{bx}{y}$: b : $\frac{bq}{p}$

Multiplying or division of a constant on all the terms of ratio, doesn't affect the ratio of a : b : c,

Multiply y to all the terms in ratio, such that $a:b:c=y*\frac{x}{y}:y*1:y*\frac{q}{p}=x:y:\frac{qy}{p}$

Multiply p to all the terms in ratio, such that $a:b:c=p^*x:p^*Y:p^*\frac{yq}{p}=px:py:yq$

Therefore, the ratio a : b : c = px : py : yq

• The ratio between milk and water is a : b, the total quantity is Q. Then find the amount of water x to be mixed so that the ratio becomes c : d.

Sol:

The ratio between water and milk is a : b, Let the amount of milk = ak

Let the amount of water = bk, where k is a constant

Total quantity = Q, which is equal to (ak + bk)

The amount of water to be mixed = x

$$q = ak + bk = K(a+b) \Longrightarrow K = \frac{q}{(a+b)}$$

So,

 $\Rightarrow \frac{ak}{bk+x} = \frac{c}{d}$ $\Rightarrow akd = c(bk+x)$ $\Rightarrow akd = cbk + cx$ $\Rightarrow akd - cbk = cx$ $\Rightarrow \frac{k(ad-cb)}{c} = x$

Substitute k in the above equation, such that $x = \frac{q(ad-cb)}{c(a+b)}$

Points to remember

1. A quantity q divided in the ratio of a : b, then each part of the quantity is

I. The first part is
$$\frac{a}{(a+b)}*q$$

II. The second part is $\frac{b}{(a+b)}*q$

- 2. If a number n is added to a ratio a : b such that the ratio becomes p : q, then $n = \frac{(aq bp)}{(p-q)}$
- 3. If a:b=x:y and b:c=p:q, then a:b:c=px:py:yq
- 4. The ratio between milk and water is a : b, the total quantity is Q. Then, the amount of water x to be mixed so that the ratio becomes c : d is $x = \frac{q(ad cb)}{c(a+b)}$